Способ поиска и разведки залежей флюидных полезных ископаемых
Использование: при разработке нефтегазовых месторождений и месторождений термальных вод. Сущность изобретения: вначале измеряют теплопроводность газо-, нефте- и водонасыщенных образцов кернового материала горных пород региона. Моделируют в условиях лаборатории пластовые температуры и давления в зависимости от совместного влияния в измеренных параметров и химического состава насыщающей среды. Затем, используя измеренные данные этого параметра, определяют теплопроводность для различных по составу литологических комплексов в условиях глубинного залегания. Результаты определения наносят на геологическую карту региона, при этом распределение теплопроводности на карте покажет аномальные участки флюидных залежей. Достоверность полезного объема залежи выявляется определением естественной пористости. 1 з.п. ф-лы.
Изобретение относится к геофизике и предназначено для поиска и разведки залежей флюидных полезных ископаемых, может быть использовано для повышения эффективности разработки нефтегазовых и геотермальных месторождений.
Известен способ поиска залежей нефти и газа (авт.св. СССР N 1004943, 1983), путем выявления глубококорневых трубообразных каналов в субвертикальных зонах тектонического дробления, бурение осуществляют в зонах влияния указанных каналов. Этот способ не пригоден для поиска и разведки залежей в зонах, не подверженных тектоническому дроблению. Известен способ геологической разведки, использующий сигналы электронного спинового резонанса, полученные от углеводородных пластов (патент США N 4607014, 1984), путем подвержения образцов из буровых скважин соответствующему воздействию для возбуждения электронов, находящихся в образцах, при этом исходят из графиков траекторий возможных миграций, определяют источники маркированных образцов, показавших наличие сигналов усиленного эср, направление и глубины подземных нефтеносных пластов. Недостатком этого способа является то, что он не позволяет вести поиски и разведку водо-газоносных залежей и достоверно выявить полезный объем. Наиболее близким к предлагаемому является способ поиска и разведки залежей флюидных полезных ископаемых, использующий геотермические параметры, которые характеризуют возможность его осуществления (Соколов В.Л. и др. Поиски и разведка нефтяных и газовых месторождений. -М.: Недра, 1974, с. 57, 166, 181, 208, 210), путем изучения теплового потока, генерирующий над геологическими структурами залежей вблизи поверхности земли, отражающих различные особенности строения земной коры. Интенсивность теплового потока вблизи поверхности земли зависит от энергетической насыщенности земной коры в данном районе, от теплопроводности горных пород и от геологической структуры. Далее определяют параметры залежи для подсчета запасов и пространственной изменчивости геолого-промышленных параметров по объектам (по горизонтам и т.д.). Недостатком этого способа является низкая эффективность и достоверность, заключающаяся в том, что использующие параметры приведены без признаков средства и методов их изучения. Он не рассматривает возможность поиска геотермальных месторождений и не позволяет достоверно выявить полезный объем на глубинах, не достигнутых бурением. Цель изобретения - повышение эффективности поиска и разведки залежей флюидных полезных ископаемых и достоверности выявления полезного объема этих залежей. Указанная цель достигается тем, что: 1. Применяя известный ранее способ определения коэффициента теплопроводности веществ (авт.св. СССР N 760774, 1980) по новому назначению - используя экспериментальные данные теплопроводности газо-, нефте-водонасыщенных образцов кернового материала геологических образований региона, полученные этим способом в условиях, моделирующих пластовые, определяют теплопроводность для различных по составу литологических комплексов в условиях глубинного залегания пластов и выявляют его изменения на различных глубинах путем нанесения их на геологическую карту региона (карты теплопроводности). При этом распределение значений теплопроводности на карте покажет наличие, положение и направление водо-, нефте- и газоносных комплексов. Графические траектории на карте отразят наличие аномальных участков теплопроводности и их глубину, максимальные значения которой определяют центральную область, залежи водо-, нефте- и газоносных структур. 2. Применяя также известный ранее способ определения пористости горных пород (авт. св. СССР N 1718045) по новому назначению используя данные пористости горных пород кернового материала геологических образований региона, полученные этим способом в пластовых условиях на глубине H при выявлении достоверности полезного объема залежей флюидных полезных ископаемых. Сущность предлагаемого способа заключается в следующем: в начале применяя известный ранее способ определения коэффициента теплопроводности веществ (авт. св. СССР N 760774, 1980) получают экспериментальные данные теплопроводности газо-, нефте- и водонасыщенных образцов горных пород следующим образом. В измерительной ячейке устанавливают стационарное тепловое поле для каждой температуры термостатирование при выключенном основном и охранных нагревателях измеряют градиент температур на образце и определяют его направление. Градиент температур на образце может быть направлен как от нагревателя к холодильнику, так и наоборот. Также измеряют разность температур основного и охранного нагревателей, определяя направление теплового потока. Затем определяют направление теплового потока при включенных нагревателях поддерживая фиксированное значение разности температур между основным и охранным нагревателями. Если направление измеренных величин перепадов температур на образце первом и втором случаях совпадают, то из второй величины вычитается первая, а в противном случае обе величины складываются. Полученные результаты измеренных параметров используются для расчета коэффициента теплопроводности по рабочей формуле способа:



mн - искомая пористость в пластовых условиях на глубине H,%;




Формула изобретения

где


m0 и mH - пористость в нормальных условиях и на глубине H.