Индикатор ультрафиолетового излучения
Изобретение позволяет определять дозу УФ-излучения в области длин волн вблизи 270 нм, где максимальна возможность повреждения кожи человека. Индикатор состоит из подложки, на которую нанесен полимерный слой с гидрофильной поверхностью, затем светочувствительный слой, содержащий в качестве светочувствительного компонента N, N'-замещенное производное 4,4'-дипиридила (0,5-20 вес. %), водорастворимый полимер (4-50 вес.%), остальное - поливиниловый спирт. На подложке также имеется шкала цветов, с которой сравнивают окраску светочувствительного слоя. Светочувствительная пленка и шкала цветов покрыты защитным слоем. Индикатор может быть использован для контроля дозы УФ-излучения как от естественных источников света на открытом воздухе, так и от искусственных источников в соляриях. 1 ил.
Свет необходим для существования большинства живых организмов, в том числе и человека. Вместе с тем имеется реальная опасность нанесения вреда человеческому организму в результате получения большой дозы излучения в ультрафиолетовом диапазоне спектра, т.е. в области длин волн
< 380 нм как от естественных, так и от искусственных источников света. На ультрафиолетовую часть спектра приходится
10% энергии всего диапазона солнечного излучения. У искусственных источников света, используемых в соляриях, эта доля может быть существенно выше. Ультрафиолетовая часть спектра делится на две большие области: вакуумный ультрафиолет с
< 185 нм и ближний ультрафиолет 185 <
< 380 нм . Область ближнего ультрафиолета, в свою очередь, делится на области A (380 - 320 нм), B (320 - 280 нм) и C (280 - 185 нм). Свет A-диапазона вызывает покраснение и пигментацию кожи человека, а B- и C-диапазонов, кроме того, при большой дозе может привести к мутациям и возникновению рака кожи. Это обусловливается тем, что поглощение компонентов ДНК и белков находится именно в этих областях спектра. Максимальная относительная эффективность генерации повреждений кожи достигается при
= 270 нм и значительно уменьшается при смещении как в сторону меньших, так и больших длин волн. Тем не менее, несмотря на отмеченную выше опасность, излучение в этом спектральном диапазоне является жизненно необходимым.
< 300 нм. Известно устройство для детектирования ультрафиолетового излучения в диапазоне 290 - 400 нм [4], в котором основной частью является светочувствительный материал в виде тонкой пленки, содержащей ряд кислотно-основных индикаторов, а также водную эмульсию галогенсодержащих материалов. Образующиеся под действием УФ-света галогенводородная кислота взаимодействует с индикаторами, окрашивая пленку в различные цвета. Определение дозы производится путем сравнения окраски светочувствительного слоя с окраской полей сравнения. Недостатками этой системы являются одноразовый характер действия светочувствительного слоя, небольшой срок хранения светочувствительного слоя ввиду неустойчивости водной эмульсии, а также испарения воды, приводящего к разрушению эмульсии, смещение как коротковолновой, так и длинноволновой границы области спектральной чувствительности в область больших длин волн по сравнению с оптимальным их расположением. Наиболее близким к изобретению является дозиметр ультрафиолетового излучения [5], представляющий собой подложку, на которую нанесена пленка, состоящая из поливинилового спирта как пленкообразователя, 50 - 99 вес.% (возможно в смеси с другими гидрофильными полимерами), кислоточувствительного красителя , 0,01 - 5 вес.%, поверхностно-активного вещества, 0,05 - 5 вес. %, и нитрозамещенного в орто-положении ароматического альдегида, 1 - 40 вес. %, в виде его аддукта с бисульфитом натрия. Для того, чтобы исключить влияние УФ-света в A-диапазоне, на пленку нанесен светофильтр, а для защиты от влаги и механических повреждений нанесена защитная планка из полиэтилена, полиметакрилата или других полимеров. В дозиметре имеется шкала цветов, с которой для определения дозы сравнивают окраску светочувствительного слоя после облучения. Под воздействием УФ-света ароматический o-нитроальдегид, например o-нитробензальдегид, превращается в соответствующую кислоту, которая взаимодействует с содержащимися в слое кислоточувствительными красителями, что приводит к окрашиванию слоя поливинилового спирта. Недостатками описанного дозиметра являются необходимость использования светофильтра для поглощения света в A-диапазоне, одноразовое использование светочувствительного слоя вследствие его необратимого окрашивания и малая сохранность из-за старения слоя ввиду возможного окисления ароматического o-нитроальдегида в кислоту под действием кислорода воздуха. Изобретение решает задачу создания простого по конструкции и дешевого индикатора УФ-излучения в области длин волн вблизи 270 нм, где максимальна вероятность повреждения кожи человека, без использования специальных светофильтров, пригодного для многократного использования и с большим сроком годности. Решение этой задачи достигается тем, что индикатор (см. чертеж) состоит из подложки 1, на которую нанесен полимерный слой 2, представляющий собой гидрофобную пленку с гидрофилизированной поверхностью, на которую нанесен светочувствительный слой 3, содержащий поливиниловый спирт, водорастворимый полимер и светочувствительный компонент, в качестве которого применяют N, N'- замещенное производное 4,4'-дипиридила, имеющее максимум поглощения в области 260 - 280 нм, при соотношении компонентов (вес.%): N, N'- замещенное производное 4,4'-дипиридила 0,5-20, водорастворимый полимер 4-50, поливиниловый спирт - остальное. На подложке также имеется шкала цветов 4, с которой сравнивают окраску светочувствительного слоя и таким образом определяют дозу облучения. Светочувствительная пленка и шкала покрыты защитной пленкой от проникновения влаги и механических повреждений 5. Окрашивание светочувствительной пленки с максимальной эффективностью происходит под действием света с длиной волны около 270 нм в результате фотохимической реакции между донорными компонентами пленки (например, поливиниловым спиртом) и N, N' - замещенными производными 4,4' - дипиридила, являющимися электроноакцепторами. Эта реакция приводит к образованию катион-радикалов производных 4,4'-дипиридила, интенсивно поглощающих свет в видимой области спектра. Наиболее часто встречающаяся окраска таких соединений - синяя или фиолетовая. Катион-радикалы замещенных производных дипиридила могут окисляться кислородом воздуха и снова превращаться в исходные дикатионы. Такой процесс может повторяться не менее 12 раз. До момента использования при обычной температуре в отсутствие света индикатор может храниться в течение нескольких лет без изменения эксплуатационных характеристик. В качестве светочувствительного компонента выбраны низкомолекулярные (формула 1), а также полимерные производные дипиридила в виде ионенов (формула 2), карбоцепных полимеров винилового ряда (формула 3) и простых полиэфиров (формула 4): 1) низкомолекулярные производные
где R1, R2 - алкилы CkH2k+1 (k=1-8) или аралкилы (бензил, ксилил, и т.д.); A- - Cl-, Br-, ClO-4, 2) полимерные ионены
гдеR - (CH2)m, m = 2-5;
n = 2-10;
A- - Cl-, Br-, ClO-4,
3) карбоцепные полимеры винилового ряда

где
x = 0,2-0,8;
n = 5-104;
R - алкил CkH2k+1, k = 2-10 или бензил;
A- - Cl-, Br-, ClO-4,
4) производные полиэпихлоргидрина

где
R1 - CmH2m+1, m = 2-10;
A- - Cl-, Br-, ClO-4. Диапазон поглощения этих веществ определяется наличием дипиридилиевых фрагментов. Поэтому они могут быть встроены в различные химические структуры и введены в различные композиции, при этом их фотохимические свойства изменяются незначительно. Содержание производных дипиридила в светочувствительных пленках может изменяться в пределах 0,5 - 20 вес.%. При содержании < 0,5 вес.% снижается максимальная возможная оптическая плотность пленки, а при содержании > 20 вес.% ухудшаются ее механические свойства и падает светочувствительность. Водорастворимые полимерные добавки введены в светочувствительную композицию для повышения проницаемости светочувствительного слоя к кислороду. Это могут быть полиэтиленгликоли, частично омыленный поливинилацетат (сольвар), карбоксиметилцеллюлоза, другие ее производные, поли-N-винилпирролидон, поли-N-винилкапролактам и некоторые другие добавки. Весовое содержание этих компонентов может изменяться в пределах 4 - 50 вес.%. Расположенный между подложкой и светочувствительной пленкой полимерный слой служит для гидрофилизации подложки и для защиты светочувствительного слоя от проникновения в него веществ из подложки, способных ухудшить свойства светочувствительного слоя. Благородя этому улучшается адгезия пленки к подложке и увеличивается срок сохранности индикатора. В качестве материала для этого слоя могут быть использованы частично омыленный поливинилацетат с содержанием ацетатных групп не менее 60%, гидролизованный сополимер этилена и винилацетата (сэвилен), сополимер 2-гидроксиэтилметакрилата с различными алкилметакрилатами, полиэтилен с привитой полиакриловой кислотой со степенью прививки до 30% и др. Взаимное расположение полей сравнения и светочувствительного слоя может быть различно. Количество полей сравнения определяется требуемым диапазоном доз УФ-излучения и точностью их индикации. Для уверенной визуальной индикации дозы, отвечающие соседним полям сравнения, должны отличаться в 1,5 раза при характерном для соединений 4,4'-дипиридилия в пленке поливинилового спирта коэффициенте контрастности
~ 0,4-0,5 . В зависимости от состава светочувствительного слоя величина определяемой дозы УФ-излучения в B-диапазоне может изменяться в интервале 10 мДж/см2 - 30 Дж/см2. Для защиты от влаги и различных повреждений поля сравнения и светочувствительный слой покрываются сверху специальным защитным полимерным слоем на основе полиэтилена или сополимера этилена и винилацетата посредством ламинирования или с использованием адгезивных составов. Для защиты светочувствительного слоя от преждевременного окрашивания индикатор помещают в непрозрачный пакет либо поверх защитного слоя наносят непрозрачную самоклеющуюся пленку, которая удаляется перед экспонированием. Основные аспекты формирования и эксплуатации индикатора УФ-излучения иллюстрируются следующими примерами. Пример 1. 0,1 г (0,5 вес. %) N, N' -дибутилдипиридилийдиперхлората растворяется в 500 мл водного раствора, содержащего 19,1 г (95,5 вес.%) поливинилового спирта и 0,8 г (4 вес.%) полиэтиленгликоля. Пленка раствора в виде полоски наносится на полимерную основу белого цвета, покрытую тонкой пленкой сольвара. На основу также наносятся поля сравнения в непосредственной близости от светочувствительного слоя. После высушивания раствора и формирования светочувствительного слоя, поверх него наносится защитный слой на основе сополимера этилена и винилацетата методом ламинирования. При освещении индикатора со стороны светочувствительного слоя с помощью ртутной лампы ДРП-250 происходит постепенное окрашивание светочувствительного слоя в сине-фиолетовый цвет. Предельная степень окрашивания, отвечающая оптической плотности
0,4, достигается через 60 мин. При комнатной температуре в условиях искусственного освещения или в темноте происходит полное обесцвечивание окрашенного светочувствительного слоя в течение 10 ч. Процесс окрашивания/обесцвечивания может быть повторен не менее 12 раз. Без изменения рабочих характеристик в темноте и при комнатной температуре пленка может храниться не менее 1,5 лет. Пример 2. 1 г (20 вес.%) полипентаметилендипиридилия дибромида растворяется в 80 мл водного раствора, содержащего 3 г (60 вес.%) поливинилового спирта и 1 г (20 вес.%) карбоксиметилцеллюлозы. Пленка раствора в виде круглого пятна наносится на полимерную основу, покрытую тонкой пленкой сэвилена, подвергнутого гидролизу в водно-щелочном растворе. После высушивания раствора и образования светочувствительного слоя круглой формы по периметру светочувствительного слоя наносятся поля сравнения. После этого производится ламинирование поверхности индикатора с использованием полимерных пленок, пропускающих свет в области длин волн более 250 нм. При освещении индикатора прямым солнечным светом в июне в ясную погоду в период времени с 10 до 14 ч интенсивное окрашивание слоя до оптической плотности
1,5 происходит в течение
60 мин. Обесцвечивание светочувствительного слоя происходит в течение не более 8,5 ч. Число циклов окрашивания/обесцвечивания составляет не менее 12. Время хранения пленки в темноте при комнатной температуре без изменения характеристик не менее 1,5 лет. Пример 3. Предварительно был осуществлен синтез N-децилперидилийпиридилхлорида, который был использован для проведения реакций полимераналогичного превращения полиэпихлоргидрина. Продукт этой реакции со степенью замещения 35 мол.% в количестве 1,5 г (12,5 вес.%) был растворен в 200 мл водного раствора, содержащего 4,5 г (37,5 вес.%) поливинилового спирта и 6 г (50 вес. %) поли-N-винилпирролидона. Раствор был нанесен в виде полоски на непрозрачную полимерную основу, покрытую пленкой сополимера 2-гидроксиэтилметакрилата с бутилметакрилатом, а затем после высушивания и формирования полимерного слоя на эту же основу наносят поля сравнения. Под действием света ультрафиолетовой лампы УФО-03-250Н интенсивное окрашивание светочувствительного слоя происходит в течение 10 мин при расстоянии 2 м от источника света. Процесс обесцвечивания происходит в течение 7 ч. Минимальное число циклов окрашивания/обесцвечивания составляет 12. Рабочие характеристики индикатора не меняются при хранении пленки в темноте в течение 1,5 лет. Пример 4. Сополимер стирола с дихлоридом n-(N-бензил-N'-метилен-4,4'-дипиридилий)стирола (формула 3 при x = 0,26, R = бензил и A = Cl-) в количестве 1 г (8,5 вес.%) растворяли в 200 мл водного раствора, содержащего 7,2 г (61 вес.%) поливинилового спирта и 3,6 г (30,5 вес.%) сольвара. После нанесения раствора в виде пленки на полимерную основу, покрытую пленкой полиэтилена с привитой полиакриловой кислотой, а также последующего нанесения полей сравнения проводили ламинирование индикатора с помощью полимерной пленки. Освещение устройства прямым солнечным светом в ясный день в мае в период с 11 до 14 ч в течение 1 ч приводит к интенсивному окрашиванию светочувствительного слоя в фиолетово-синий цвет. Процесс обесцвечивания происходит примерно за 8 ч. Число циклов окрашивания/обесцвечивания превышает 12. Рабочие характеристики индикатора не меняются при хранении пленки в темноте в течение 1,5 лет. Таким образом, из приведенных примеров видно, что процесс изготовления индикатора легко осуществим. Индикатор позволяет достичь поставленной цели, а именно в течение достаточно длительного времени обеспечить многократный контроль дозы УФ-облучения в области 270 нм без использования специальных светофильтров.
Формула изобретения
N,N'-замещенное производное 4,4'-дипиридила - 0,5 - 20,0
Водорастворимый полимер - 4 - 50
Поливиниловый спирт - Остальноеа
РИСУНКИ
Рисунок 1










