Способ обеспечения пожарной безопасности обитаемых гермоотсеков космических летательных аппаратов
Использование: для обеспечения пожарной безопасности обитаемых гермоотсеков космических летательных аппаратов. Сущность изобретения: на стартовой позиции и на участке выведения корабля на околопланетную орбиту в гермоотсеке поддерживается концентрация кислорода ниже значения предела горения по концентрации кислорода для наиболее горючих из используемых материалов, а в орбитальном полете по сигналу средств обнаружения пожара работа системы вентиляции в гермоотсеке переводится на циклический режим, состоящий из периода отключенного состояния системы вентиляции в течение времени, за которое в гермоотсеке происходит остановка движения газовой среды до уровня, соответствующего нижнему пределу горения материалов по скорости потока в невесомости и периода включенного состояния системы вентиляции в течение времени, за которое газовая среда в замкнутом вентиляционном контуре в гермоотсеке проходит между двумя смежными пожарными извещателями, при этом циклический режим работы системы вентиляции осуществляется до момента начала снижения уровня опасных факторов пожара в гермоотсеке, зафиксированного средствами обнаружения пожара. 1 ил.
Изобретение относится к противопожарной технике и может быть использовано при предотвращении возникновения и тушения пожара в обитаемых гермоотсеках космических летательных аппаратов /КЛА/: транспортных кораблей и долговременных станций.
В обитаемых гермоотсеках КЛА атмосфера значительно ( до 30-40 об.%) обогащена кислородом. В то же время, тенденция развития космической техники такова, что с выполнением требований по снижению массы оборудования в обитаемых гермоотсеках постоянно расширяется применение неметаллических материалов. Основная их доля в настоящее время является горючей в обогащенной кислородом атмосфере, что создает высокий потенциальный уровень пожарной опасности в гермоотсеках КЛА. При этом гермоотсеки крайне уязвимы для пожара. Практически невозможно оказание помощи извне и эвакуация экипажа при пожаре. Гермоотсеки КЛА в высокой степени насыщены электрообрудованием, именно его элементы при отказах являлись источником катастрофических пожаров в гермоотсеках различных изделий. Выбор мероприятий по предотвращению пожара и его тушению зависит от специфики условий эксплуатации изделия, а также необходимости выполнения специфических требований, к которым в случае КЛА относятся требования ограничения массы оборудования и экологии средств обеспечения пожарной безопасности. Эксплуатационный период космического корабля включает в себя несколько этапов: подготовка корабля на стартовой позиции, активный участок выведения его на орбиту, орбитальный полет, спуск (для транспортных кораблей). В течение каждого из них должна обеспечиваться пожарная безопасность с соответствующей надежностью при соблюдении требований экономии массы и экологии. Известны способы обеспечения пожарной безопасности обитаемых гермоотсеков с искусственной атмосферой, в том числе КЛА, которые заключаются в использовании материалов, негорючих в обогащенной кислородом атмосфере [1]. При создании долговременных орбитальных станций и других КЛА только 20 - 30% материалов (по массе) являются негорючими при той концентрации кислорода, которая имеет место с гермоотсеках КЛА. В частности, большая часть электротехнических материалов в электрооборудовании КЛА способна к интенсивному горению в рабочей атмосфере КЛА. Отсюда следует, что посредством использования материалов, негорючих в среде, обогащенной кислородом, крайне сложно и дорого обеспечивать пожарную безопасность обитаемых гермоотсеков КЛА, особенно тяжелого типа, таких как долговременные станции. Ближайшим аналогом является система, обеспечивающая пожарную безопасность внутри гермоотсеков американского орбитального корабля многоразового использования "Спейс Шатлл", которая включает в себя дымовые пожарные извещатели, средства тушения и средства контроля за работоспособностью элементов системы. В качестве огнетушащих веществ используются хладон или углекислота [2]. Недостатками является то, что применение огнетушащего вещества в гермоотсеке КЛА в период полета или его подготовки на старте само по себе независимо от масштаба пожара является аварийной ситуацией, которая приводит к срыву программы и прекращению полета из-за загрязнения атмосферы гермоотсека и оборудования. В частности, после объемного пожаротушения, атмосфера гермоотсека нуждается в тщательной очистке или замене и для продолжения полета необходимо иметь на борту мощные фильтры-поглотители или запасы азота и кислорода. Вывод на орбиту всего комплекса оборудования (пожарного, фильтров, баллонов с газами) связано с большими материальными затратами. Следует учитывать, что с увеличением содержания кислорода в атмосфере возрастает необходимый запас огнетушащего вещества, а следовательно, и масса оборудования для пожаротушения. Так, для тушения многих материалов при концентрации кислорода в среде 40% необходим 1 кг шестифтористой серы на 1 м.куб. объема отсека. Оценки показывают, что для отсека объемом 100 м.куб масса установки объемного пожаротушения и средств утилизации огнетушащего вещества составляет 250-300 кг. Вывод такой массы на орбиту является весьма дорогостоящим - это мешает использованию на борту высокоприбыльного технологического оборудования. Использование средств локального тушения на борту КЛА также малоэффективно: во-первых, они не могут быть задействованы в автоматическом полете; во-вторых, применение их затруднено вследствие крайне плотной компоновки оборудования в гермоотсеках КЛА и ограниченного доступа к нему, особенно в приборных зонах. При использовании пенных средств тушения возможен выход из строя электрооборудования, ответственного за живучесть КЛА. Технической задачей изобретения является обеспечение предотвращения пожара в обитаемых гермоотсеках КЛА на стартовой позиции и на активном участке, а также введения циклического режима работы системы вентиляции, повышающего эффективность использования способа тушения в части повышения надежности фиксирования факта прекращения горения. Задача решается тем, что на стартовой позиции и на участке выведения космического корабля на околопланетную орбиту в гермоотсеке поддерживается концентрация кислорода ниже значения предела горения по концентрации кислорода для наиболее горючих из используемых материалов, а в орбитальном полете по сигналу средств обнаружения пожара работа системы вентиляции в гермоотсеке переводится на циклический режим, состоящий из периода отключенного состояния системы вентиляции в течение времени, за которое в гермоотсеке происходит остановка движения газовой среды до уровня, соответствующего нижнему пределу горения материалов по скорости потока в невесомости, и периода включенного состояния системы вентиляции в течение времени, за которое газовая среда в замкнутом вентиляционном контуре в гермоотсеке проходит между двумя смежными пожарными извещателями, при этом циклический режим работы системы вентиляции осуществляется до момента начала снижения уровня опасных факторов пожара в гермоотсеке, зафиксированного средствами обнаружения пожара. На чертеже показано изменение скорости вентиляционного потока в гермоотсеке КЛА в циклическом режиме при осуществлении тушения пожара в гермоотсеке и фиксации факта прекращения горения. Приняты следующие обозначения:
























l=H


k, n, m - эмпирические коэффициенты. Значения коэффициентов k, n, m находятся в следующих диапазонах: k - от 0,03 до 0,86, n - от 1,15 до 4,14, m - от 0,7 до 3,62. В результате испытаний были получены зависимости указанных критериев для ламинарного, переходного и турбулентного режимов течения газа в период вязкостной диссипации кинетической энергии его движения в диапазоне критерия Re от 18 до 13360, что обеспечивает определение времени торможения вентиляционных потоков в гермоотсеках современных КЛА. Для расчета времени, в течение которого в рабочем цикле пожаротушения должна работать система вентиляции для доставки продуктов горения к пожарным извещателям, можно воспользоваться формулой, полученной из уравнения движения газовой среды в гермоотсеке:

где Gr - масса газовой среды в гермоотсеке, кг;
QB - объемный расход вентиляционной системы, м3/с;
Vраб - скорость вентиляционного потока в стационарном режиме, м/с;
NB - мощность вентиляторов, Вт;
SB - площадь поперечного сечения выходного патрубка вентилятора, м2;
V - скорость, которую необходимо достигнуть, чтобы обеспечить перенос продуктов горения от одного пожарного извещателя к другому. Расчетно-экспериментальные исследования показали, что надежного предотвращения повторного воспламенения можно достигнуть, если величины


Формула изобретения
РИСУНКИ
Рисунок 1