Генератор импульсов для электроэрозионной обработки
Использование: в области электрофизических методов обработки материалов. Сущность изобретения: в генераторе импульсов для электроэрозионной обработки применены индуктивные накопители энергии, имеющие первичную и вторичную обмотки и обмотку управления. Индуктивные накопители запасают энергию от источника питания через зарядные ключи, имеющие схему управления, состоящую из задающего генератора, датчика тока и блока управления зарядными ключами. В режиме отдачи энергии индуктивный накопитель отдает ее на межэлектродный промежуток или в случае отсутствия пробоя его, возвращает накопленную энергию в источник питания через разрядные ключи. Во время пауз между импульсами рабочего тока, которые формируются путем замыкания силового ключа, шунтирующего обметку управления индуктивного накопителя энергии, последний находится в режиме хранения энергии с малыми потерями. 1 ил.
Изобретение относится к области электрофизических методов обработки материалов и, в частности касается генераторов импульсов для электроэрозионных (ЭЭ) станков.
Известны ключевые, в частности транзисторные генераторы импульсов для ЭЭ станков, содержащие задающий генератор и источник питания, подключенный в межэлектродному промежутку (МЭП) через последовательную цепь, состоящую из транзистора и токоограничивающего активного сопротивления. К недостаткам таких генераторов следует отнести низкий КПД, и увеличение тока между электродами при коротком замыкании МЭП. Известен также генератор импульсов, содержащий источник питания, подключенный к части обмотки дросселя через последовательную цепь из двух транзисторов, у которых между эмиттером первого и коллектором второго транзисторов включен дозирующий конденсатор, а эмиттер и коллектор одного транзистора соединены через диоды, соответственно, с эмиттером и коллектором другого транзистора, выход генератора подключен к части обмотки дросселя, все витки которой подключен к МЭП. К недостаткам данного генератора импульсов следует отнести то, что генератор имеет высокий КПД только во время разряда дозирующего конденсатора, а по окончании разряда источник питания подключается к МЭП через диоды, транзисторы и часть обмотки дросселя. Сила тока, протекающего через МЭП, в этом случае будет равна





где I1 - ток первичной обмотки;
i2 - ток вторичной обмотки;
W2 - число витков вторичной обмотки;
W1 - число витков первичной обмотки;
а силовые ключи коммутируют ток

где iy - ток обмотки управления;
Wy - число витков обмотки управления. КПД предлагаемого генератора составляет 85 - 90%, а ток короткого замыкания ограничен величиной рабочего тока. Предлагаемый генератор позволяет также уменьшить его габариты и металлоемкость за счет исключения токоограничивающих сопротивлений, уменьшения количества ключевых элементов за счет более полного их использования по току и применения источника питания без силового трансформатора. Функциональная схема генератора представлена на чертеже. Генератор содержит источник питания 1, четыре датчика тока 2, 3, 4 и 5, два блока разрядных ключей 6 и 7, два блока зарядных ключей 8 и 9, блок управления зарядными ключами 10, задающий генератор 11, два индуктивных накопителя энергии, имеющих первичную и вторичную обмотки и обмотку управления, 12 и 13, два силовых ключа 14 и 15, блок управления силовыми ключами 16, блок сравнения 17, коммутатор 18 и два неуправляемых ключа 19 и 20, соединенных с одной стороны между собой и подключенных через датчик тока 3 к МЭП 21, неуправляемый ключ 19 подключен другим выводом через индуктивный накопитель энергии 12 к блоку зарядных ключей 8 и к блоку разрядных ключей 6, который с другой стороны подключен к источнику питания 1, датчику тока 2 и блоку разрядных ключей 7, второй вывод которого подключен через индуктивный накопитель энергии 13 к неуправляемому ключу 20, а через зарядных ключей 9 - к датчику тока 2 и блоку зарядных ключей 8. Управляющие входы блоков зарядных ключей 8 и 9 подключены, соответственно, к двум выходам блока управления зарядными ключами 10, два входа которого подключены, соответственно, к задающему генератору 11 и информационному выходу датчика тока 2. Два управляющих входа индуктивного накопителя энергии 12 соединены между собой через силовой ключ 14 и датчик тока 4, а два управляющих входа индуктивного накопителя энергии 13 соединены между собой через силовой ключ 15 и датчик тока 5. Информационные выходы датчиков тока 4 и 5 подключены, соответственно, к двум входам блока сравнения 17, подключенного своим выходом к входу коммутатора 18, второй вход которого подключен к третьему выходу блока управления зарядными ключами 10, а третий вход коммутатора 18 подключен через блок управления силовыми ключами 16 к информационному выходу датчика тока 3. Два выхода коммутатора 18 подключены, соответственно, к управляющим входам силовых ключей 14 и 15. Схема работает следующим образом. Блок управления зарядными ключами 10, выполненный, например на RS - триггерах, по управляющему сигналу от задающего генератора 11, например, релаксационного, попеременно замыкает ключи, например, транзисторы, или в блоке зарядных ключей 8 или в блоке зарядных ключей 9, подключая первичную обмотку индуктивного накопителя энергии 12 или 13 через датчик тока 2, состоящий, например, из шунта и компаратора, к источнику питания 1. Датчик тока 2 при достижении заданного уровня тока, устанавливаемого компаратором, через блок управления зарядными ключами 10 размыкает ключи в блоках зарядных ключей 8 или 9, индуктивный накопитель при этом переходит из режима накопления энергии в режим отдачи. Напряжение на вторичной обмотке индуктивного накопителя энергии меняет полярность и через неуправляемый ключ 19 иди 20, выполненный, например, на диоде, который становится открытым для данной полярности напряжения, прикладывается к МЭП 21. В случае отсутствия пробоя МЭП энергия, накопленная в индуктивном накопителе, возвращается в источник питания 1 через блок разрядных ключей 6 или 7, выполненный, например, на диодах, которые становятся открытыми, так как напряжение не первичной обмотке также меняет полярность. При пробое МЭП 21 блок управления силовыми ключами 16, выполненный, например, на ждущих мультивибраторах с регулируемой длительностью импульсов, по сигналу с датчика тока 3, выполненному, например, на токовом трансформаторе, начинает формировать импульс рабочего тока по длительности, по окончании которого через коммутатор 18, выполненный, например, на D-триггере и логических элементах 2И-НЕ, замыкает силовые ключи 14 и 15, выполненные, например, на транзисторах, шунтирующие обмотки управления индуктивных накопителей энергии и тем самым обесточивающие их вторичные обмотки и МЭП, и начинает формировать паузу между импульсами рабочего тока. В случае, когда оба индуктивных накопителя находятся в режиме отдачи энергии в блоке сравнения 17, выполненном, например, на компараторе, во время пауз между импульсами рабочего тока происходит сравнение энергии, оставшейся в индуктивных накопителях, по силе тока, протекающему через датчик тока 4 и 5 и силовые ключи 14 и 15. По окончании паузы блок управления силовыми ключами 16 через коммутатор 18 размыкает тот силовой ключ, через который шел больший ток. Кроме того блок управления зарядными ключами 10 запрещает коммутатору 18 размыкать силовой ключ, подключенный к обмотке управления индуктивного накопителя, находящегося в режиме накопления энергии, и, если переход индуктивного накопителя из режима отдачи энергии в режим накопления происходит во время прохождения импульса рабочего тока, происходит размыкание другого силового ключа, подключающего к МЭП индуктивный накопитель, находящийся в режиме отдачи энергии.
Формула изобретения
РИСУНКИ
Рисунок 1