Неорганический сферогранулированный композиционный сорбент на основе гидроксида циркония и способ его получения
Использование: изобретение относится к сорбентам, используемым для очистки в динамическом режиме жидких сред от радионуклидов. Сущность: неорганический сферогранулированный композиционный сорбент содержит смешанный гексацианоферрат (II) металлов состава где MI - Li+, Na+, K+, NH+4 или их смесь, MII - Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ или их смесь, х = 0 - 3,6, в количестве 5 - 54 мас.% и воду в количестве 0 - 48 мас.%, определяемую высушиванием при 110oC. Сорбент получают путем последовательной химической обработки гель-сфер гидроксида циркония с содержанием воды 15 - 75 мас.% водным раствором соли переходного металла MII, а затем соли гексацианоферрата металла MI и сушки при 18 - 300oC. Достигаемый технический результат: сорбент обладает высокой селективностью по отношению к радионуклидам Cs, высокой сорбционной емкостью, стабилен при длительном использовании. 2 с. и 4 з.п.ф-лы, 6 табл.
Изобретение относится к неорганическому композиционному сферогранулированному ионообменнику (сорбенту) на основе неорганического носителя - гидроксида циркония и гексацианоферрата переходных металлов, а также к способу его получения. Сорбент эффективен при очистке жидких сред в непрерывном режиме (технологические, питьевые и сбросные воды) от различных радионуклидов, в частности 137Cs и 134Cs. Он может найти применение при извлечении из водных потоков ценных микрокомпонентов, например серебра, рубидия, цезия.
Несмотря на значительный прогресс в разработке новых ионообменных материалов, в особенности селективных к ионам металлов, наблюдается определенный недостаток в ионообменниках, обладающих повышенной селективностью к ионам тяжелых щелочных металлов, в частности к катионам цезия. Органические катионообменные смолы хотя и являются химически и механически устойчивыми материалами, но проявляют гораздо более низкую селективность в этом отношении, чем неорганические сорбенты на основе труднорастворимых гексацианоферратов переходных металлов [1. Тананаев И.В., Сейфер Г.Б., Харитонов Ю.Я. и др. Химия ферроцианидов. -М.:Наука, 1971; 2. Loewenschuss H. Metal-ferrocyanide complexes for the decontamination of cesium from agueous radioactive waste// Radioact. Waste Manage., 1982, v.2, N 4, p.327; 3. Милютин В. В. , Гелис В.М., Пензин Р.А. Сорбционно-селективные характеристики неорганических сорбентов и ионообменных смол по отношению к цезию и стронцию// Радиохимия, 1993, т. 35, N 3, с. 76]. Известны неорганические сорбенты на основе смешанных ферроцианидов переходных металлов (например никеля и кобальта), получаемые методом осаждения. Например, сорбент состава K2Co[Fe(CN6)] используют для удаления радиоактивного цезия из водных растворов, имеющих pH 1-14 [4. Патент США N 3296123, кл. 210-38, 1967]; сорбент получают добавлением водного раствора K4[Fe(CN6)] к водному раствору соли кобальта - Co(NO3)2, CoSO4 и CoCl2 с образованием осадка, который отделяют, промывают и сушат при температуре не более 150oC. Предложен также сорбент состава KnNim[Fe(CN6)] (где n=0,92-1,00, m=1,50-1,54), который используют для извлечения рубидия из растворов [5. Авт. св. СССР N 552105, кл. B 01 J 1/22, C 01 D 17/00, 1977]; сорбент получают восстановлением гелеобразного осадка Ni1,5[Fe(CN6)] до гексацианоферрата (II) с последующим гранулированием полученного продукта замораживанием. Несмотря на хорошие сорбционно-селективные свойства таких ионообменников применение их в колоночном режиме сорбции неэффективно, так как сорбенты, полученные гелевым методом, отличаются низкой прочностью и в процессе фильтрации материал загрузки быстро слеживается и разрушается. Кроме того, эти неорганические ионообменники имеют неправильную форму зерна, что создает значительные перепад давления при фильтрации раствора через сорбент. Для преодоления этих недостатков предложены композиционные сорбенты на основе органического сферогранулированного носителя и смешанных гексацианоферратов переходных металлов: на анионите [6. Патент Великобритании N 1115258, кл. B 01 D 15/04, 1968; 7. Патент США N 3453214, кл. G 21 F 9/12, B 01 D 15/04, C 01 D 11/04, 1969; 8. Патент Германии N 4009651, кл. B 01 J 45/00, 39/04, A 23 C 21/00, G 21 F 9/06, 1991], на катионите [9. Авт. св. N 778780, кл, B 01 J 19/04, C 01 D 17/00, 1980; 10. Европейский патент N 217143, кл. B 01 J 39/02, 39/16, 1987], на пористом угле или гранулированной целлюлозе [11. Патент РФ N 2021009, кл. B 01 J 20/02, 20/30, 1994]. Сорбенты используют преимущественно для дезактивации растворов от радиоактивного цезия (кроме [9] , который предназначен для гидрометаллургии и химической технологии). Сорбенты получают путем попеременной обработки органической основы концентрированными растворами солей переходного металла и гексацианоферрата (II) щелочного металла; таким способом получают: - гексацианоферраты формулы AzMy[Fe(CN6)], где A - Li, Na, K, Rb, M - Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu [6]; - AzMy[Fe(CN)6], где A - щелочной металл, M - Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn [7]; - смешанный гексацианоферрат аммония и меди [8]; - смешанный гексацианоферрат щелочного металла и меди [9]. Неорганические композиционные сорбенты получают также и путем внесения неорганического порошкообразного сорбента в реакционную смесь в процессе поликонденсационного синтеза органического катионообменника [10]; в этом случае в качестве активной основы выбирают гексацианоферраты таких металлов, как Co, Fe, Ni, Cu, Mn, Zn, Ti, Cd, Zr, Cr, V, Pb, Mo, которые вводят в количестве 1-80 мас.% от общей массы. Наконец, можно получить сорбенты и путем обработки пористого органического носителя водной суспензией, полученной в результате смешивания солей переходного металла, гексацианоферрата щелочного металла и водорастворимого фосфата, причем соль переходного металла содержит этот металл в разных степенях окисления [II]; состав образующейся в носителе кристаллической фазы представляет собой соединение M1xM2y[Fe(CN)6], , где M1 - Fe, Ni, Cu, Co, Cr, Ti, а M2 - Li, K, Na, NH4, а сорбент содержит до 25-30 мас.% активного компонента. Недостатки известных сорбентов по патентам [6-11] заключается в том, что в условиях длительной эксплуатации при дезактивации высокоактивных растворов или при работе в сильных радиационных полях происходит деструкция органической основы (носителя) и разрушение сорбента; в результате это приводит к сокращению полезного времени работы загрузки. Поэтому наиболее предпочтительными с точки зрения радиационной стойкости являются композиционные гексацианоферратные сорбенты на неорганическом носителе, в качестве которого обычно используют: - алюмогель [12. Авт. св. СССР N 801871, кл. B 01 J 19/04, 1981], а активный компонент - смешанные гексацианоферраты (II) калия и Mg, Zn, Mn или Fe в количестве 26,9-57,4 мас.%; - цеолиты, или алюмосиликаты [13. Патент ФРГ N 3045921, кл. B 01 J 20/16, 1981; 14. Авт. св. СССР N 1115792, кл. B 01 J 20/00, 1984], активный компонент по [13] - смешанные гексафианоферраты (II) щелочного металла и кальция, по [4] - смешанные гексафианоферраты (II) щелочного металла и Cu, Ni, Co, Mn или Zr; - силикагель [15. Авт. св. ЧССР N 179541, кл. B 01 J 13/00, 1979], активный компонент - гексафианоферраты (II) калия и Zn, Cd или Ni;- стекловолокно [6], активный компонент, как указано выше, смешанный гексацианоферрат (II) щелочного металла и переходного металла в количестве 20 мас.%. Все указанные композиционные сорбенты, кроме сорбента [14], используемого в химической технологии для выделения рубидия и цезия из технологических и природных вод, предназначены для селективного выделения радиоактивного цезия из технологических и сбросных растворов атомной промышленности. Основной недостаток известных гексацианоферратных композиционных сорбентов на неорганическом носителе [65, 12-15] связан с их неудовлетворительной химической стойкостью в щелочных средах (особенно при значениях pH > 9-10), что обусловлено природной неорганической матрицы. Кроме того, для формирования в носителе (как неорганическом, так органическом) высокой концентрации кристаллической фазы обработку основы проводят обычно насыщенными растворами реагентов и неоднократно, что усложняет синтез и увеличивает объемы образующихся при этом сбросных вод. Наиболее близким по технической сущности к заявляемому сорбенту и способу его получения является неорганический сферогранулированный сорбент на основе гидроксида циркония, получаемого с использованием золь-гель метода, в котором отвердение материала сочетается с формированием гранул (Калинин Н.Ф. , Зильберан М.В. и др. О технологии производства неорганических сорбентов// Тез. докл. XIII Всес. семинара "Химия и технология неорганических сорбентов". Минск, 1991, с. 29). В указанном известном техническом решении способ получения сорбента основан на золь-гель процессе и гранулировании со связующим, который включает в себя отвердение суспензии неорганического сорбента, например гидроксида циркония, в растворе органического полимера, способного к образованию устойчивого золя. Полученный композиционный сорбент обладает высокой гидромеханической прочностью, однородностью гранулометрического состава и может использоваться в качестве химически стойкой катионообменной загрузки колонн при обработке водных потоков, имеющих щелочную среду. Недостатком известного технического решения является невысокая сорбционная емкость к тяжелым щелочным металлам и низкая селективность к радионуклидам цезия в присутствии солевого фона и высокой щелочности среды (pH > 8-9), Кроме того, использование в составе известного сорбента полимерного связующего ограничивает сферу применения его для технологических растворов с высоким уровнем активности и высокой температурой ввиду радиационной и термической деструкции органической основы и разрушения материала. В основу изобретения положена задача создать сферогранулированный неорганический композиционный сорбент на неорганическом носителе - гидратированном диоксиде циркония, содержащий в качестве селективно-сорбционной среды смешанный гексацианоферрат переходных металлов и отличающийся повышенной стабильностью в водных потоках (в особенности в щелочной области) в условиях его длительной эксплуатации, а также разработать способ получения этого сорбента, обеспечивающий формирование в неорганической основе указанной кристаллической фазы и создание в композите необходимого комплекса физико-химических свойств и характеристик (сферическая форма зерна, высокая сорбционная емкость, повышенная избирательность к радионуклидам цезия из высококонцентрированных солевых растворов, в том числе имеющих значение pH среды более 8, удовлетворительная механическая прочность зерна, повышенная химическая стойкость сорбента), что в конечном итоге обеспечит эффективное использование материала в динамических условиях и увеличит рабочий ресурс загрузки. Поставленная задача решается тем, что предлагается сферогранулированный неорганический композиционный сорбент на основе гидратированного диоксида циркония, содержащего в качестве активного компонента смешанный гексацианоферрат металлов состава

где
MI - Li+, Na+, K+, NH+4 или смесь,
MII - Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ или их смесь,
x=0-3,6,
в количестве 5-54 мас.% и воду в количестве 0-48 мас.%, определяемую с помощью высушивания при 110oC. Предлагаемый композиционный сорбент на основе гидратированного диоксида циркония, содержащий в качестве активного компонента кристаллическую фазу гексацианоферратов заявленного состава, обладает повышенной химической стойкостью, а также емкостью и селективностью к цезию, что обеспечивает увеличение ресурса его работы в жидких потоках в качестве загрузки. Увеличение содержания кристаллической фазы в сорбенте свыше 54 мас.% приводит к ухудшению прочностных свойств материала, а уменьшение ее содержания менее 5 мас. % - к значительному уменьшению сорбционной емкости. Согласно приведенной формуле состав кристаллической фазы при x=0-3,6 варьируется от простого гексацианоферрата (II) переходного металла MI2I[Fe(CN)6] до смешанного гексацианоферрата щелочного и переходного металлов MI3,6MII0,2[Fe(CN)6]. Увеличение содержания щелочного металла в заявленном составе выше указанного предела (x>3,6) приводит к значительному снижению сорбционной способности неорганического ионообменника. Поставленная задача решается также предлагаемым способом получения вышеупомянутого материала, включающим обработку гель-сфер гидроксида циркония, содержащих 15-75 мас.% воды, водным раствором соли переходного металла Mn, Fe, Co, Ni, Cu, Zn и/или Cd, промывку водой, затем обработку водным раствором соли гексацианоферрата (II) щелочного металла Li, Na, K и/или аммония, промывку водой и сушку до влажности 0-48 мас.%. При этом обработку гель-сфер гидроксида циркония водным раствором переходного металла ведут до содержания в них металла 50-800 ммоль/л, причем в качестве солей переходных металлов применяют растворы хлоридов, нитратов или сульфатов с концентрацией от 0,1 моль/л до насыщенного, а при дальнейшей обработке гель-сфер используют растворы солей гексацианоферратов с концентрацией их от 0,1 моль/л до насыщенного. Вместе с тем на конечной стадии сушку и термообработку гель-сфер ведут при 18-300oC до влажности 0-48 мас.%, получая гранулы целевого продукта. В соответствии с заявленным способом в качестве исходного материала используют гель-сферы гидратированного диоксида циркония (ГДЦ), полученные любыми известными методами (например, золь-гель методами: [16. Заявка 94028672/26 от 15.08.94 г. , на которую получено положительное решение от 5.06.95 г] либо [17. Авт. св. СССР N 1491561, кл. B 01 J 20/06, 1989]). Гель-сферы ГДЦ с влажностью 15-75 мас.% обрабатывают в соответствующей емкости при перемешивании либо в колонке водным раствором соли переходного двухвалентного металла Mn, Fe, Co, Ni, Cu, Zn, Cd. Верхний предел влажности обусловлен технологическими ограничениями при синтезе сферических гелевых частиц ГДЦ. Нижнее значение влажности связано с изменением пористой структуры частиц ГДЦ при термообезвоживании: удельный объем и размер пор сильно уменьшаются, в результате чего на второй стадии обработки затруднена диффузия крупных Fe(CN)-6- -ионов в матрицу, что отражается на снижении содержания кристаллической фазы и соответственно емкости конечного продукта. Используют растворы нитратов, хлоридов или сульфатов указанных солей с концентрацией от 0,1 моль/л до насыщенной. Условия и режим химической обработки (время контакта, скорость перемешивания и т.п.), а также соотношение твердого к жидкому Т:Ж выбирают в широких пределах таким образом, чтобы на данном этапе по окончании сорбции содержание переходного металла в гель-сферах ГДЦ составляло 50-800 ммоль/л. Здесь нижний уровень содержания переходного металла обусловлен уменьшением концентрации кристаллической фазы в сорбенте и соответственно снижением сорбционной способности, а верхний уровень - заметным уменьшением прочности конечного продукта. Затем гель-сферы отмывают водой от продуктов реакции. Далее отмытые гель-сферы обрабатывают, водным раствором солей гексацианоферратов (II) щелочных металлов Li, Na, K и/или аммония при исходной концентрации в растворе 0,1 моль/л до насыщенного. Условия и режим обработки поддерживают, как на первой стадии. Готовые гранулы отмывают водой и сушат на воздухе при 18-300oC до влажности 0-48 мас.%. Термообработка готового продукта выше 300oC нецелесообразна, т.к. способствует термическому распаду образовавшейся кристаллической фазы, в результате чего ухудшаются сорбционно-селективные свойства сорбента. В конечном результате получают прочный сферогранулированный материал на основе ГДЦ, содержащий смешанный гексацианоферрат (II) металлов типа

где MI - Li+, Na+, K+, NH+4 или их смесь,
MII - Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ или их смесь,
x=0-3,6,
в количестве 5-54 мас.% и воду в количестве 0-48 мас.%, определяемую с помощью высушивания при 110oC. Способ получения сорбента технологичен и достаточно прост, так как позволяет исключить длительные операции осаждения, фильтрации геля и его измельчения. Отмывка гелевых частиц на всех стадиях процесса происходит при значительно меньшем расходе промывных вод. Способ не требует проведения многократных попеременных операций по обработке неорганической основы, как в случае с органическими ионитами. Пример 1. Получали сферогранулированные частицы гидроксида циркония электрохимическим путем по способу [16]. Для этого водный раствор оксихлорида циркония с концентрацией 1,4 моль/л подавали в однокамерный электролизер емкостью 100 л, изготовленный из титана. Катодом служил сам корпус, а в качестве анода использовали платину. Электролиз проводили в две стадии. На первой стадии поддерживали режим при катодной плотности тока 640 A/м2 и температуре 35-40oC до достижения в рабочем растворе атомного отношения Cl/Zr, равного 0,92. На второй стадии электролиз вели при 70-80oC до достижения в растворе электролита атомного отношения Cl/Zr, равного 0,70. Полученный гель гидроксида циркония (ГДЦ) капельно диспергировали через металлический капилляр с внутренним диаметром 0,25 мм в концентрированный раствор аммиака. Полученные в виде сфер гелевые частицы ГДЦ отделяли от маточного раствора и промывали деионизованной водой. В результате получали сферические гранулы исходного ГДЦ, содержащие в своем составе воду в количестве 75,1 мас. %, оцениваемую по потере массы сорбента путем высушивания при 110oC. Эти же гранулы ГДЦ использовали при получении заявляемого неорганического сорбента по примеру 2 и согласно табл.1 (примеры 3-8), табл.2 (примеры 12) и табл.4 (примеры 26-33). В качестве прототипа использовали гранулы ГДЦ с влажностью 29,8 мас.% (брутто-формула ZrO2




- содержание ZrO2 - прямым титрованием циркония раствором комплексона III в присутствии индикатора ксиленолового оранжевого на фоне 0,3-0,5 моль/л H2SO4;
- содержание Fe(CN)46- - прямым титрованием раствором KMnO4 на фоне 0,1-0,3 моль/л H2SO4;
- содержание переходных металлов (Mn, Fe, Co, Ni, Cu, Zn, Cd) - прямым титрованием раствором комплексона III в присутствии соответствующих индикаторов согласно "ГОСТ 10398-76. Реактивы. Комплексонометрический метод определения содержания основного вещества.";
- содержание щелочных металлов (Li, Na, K) - пламеннофотометрически с помощью пламенного анализатора жидкости ПАЖ-2;
- содержание аммония - гравиметрически в виде тетрафенилбората аммония, осаждаемого в щелочной среде. Влажность сорбента (содержание воды) определяли по потере массы при высушивании навески при 110oC в течение 5 ч. Статическую обменную емкость (COE) образцов оценивали по поглощению ионов цезия из 0,1 моль/л раствора CsCl при отношении Т:Ж=100 г/мл, времени контакта 6 сут и периодическом перемешивании. Селективность сорбента оценивали по величине коэффициента распределения радионуклида 137Cs (Kd) в двух солевых средах: 2 моль/л растворе NaCl и имитатном растворе (содержание, г/л: H3BO3 100; NaNO3 100; Na2CO3 10; NaCl 10; NaOH





Формула изобретения

где MI - Li+, Na+, K+, NH+4 или их смесь;
MII - Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ или их смесь;
х = 0 - 3,6,
в количестве 5 - 54 мас.% и воду в количестве 0 - 48 мас.%, определяемую высушиванием при 110oC. 2. Способ получения неорганического сферогранулированного сорбента на основе гидроксида циркония, отличающийся тем, что гель-сферы гидроксида циркония с содержанием воды 15 - 75 мас.% обрабатывают водным раствором соли переходного металла Mn, Fe, Co, Ni, Cu, Zn и/или Cd, промывают водой, затем обрабатывают водным раствором соли гексацианоферрата щелочного металла Li, Na, K и/или аммония, промывают водой и сушат до влажности 0 - 48 мас.%. 3. Способ по п.2, отличающийся тем, что обработку гель-сфер раствором соли переходного металла ведут до содержания металла 50 - 800 ммоль/л. 4. Способ по п.2 или 3, отличающийся тем, что в качестве солей переходных металлов используют растворы хлоридов, нитратов или сульфатов с концентрацией от 0,1 моль/л до насыщенного. 5. Способ по пп.2 - 4, отличающийся тем, что обработку гель-сфер растворами солей гексацианоферратов ведут при их концентрации от 0,1 моль/л до насыщенного. 6. Способ по пп.2 - 5, отличающийся тем, что гель-сферы конечного продукта сушат при 18 - 300oC.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 21.02.2002
Номер и год публикации бюллетеня: 11-2004
Извещение опубликовано: 20.04.2004