Сопряженные роторы
Сопряженные роторы могут быть использованы в жидкоструйных насосах, вакуумных насосах, в гидро- или пневмодвигателях, а также в роторных двигателях внутреннего сгорания. Вдоль внешних окружностей сопряженных роторов расположены эвольвентные зубья 5, рабочие зубья 4 и соответствующие им впадины 3, входящие в зацепление друг с другом при вращении роторов. Форма рабочих зубьев 4 и впадин 3 определяется согласно особым расчетным формулам. При вращении роторов рабочий зуб 4 входит в зацепление с сопряженной с ним впадиной 3. При этом характеристики их равномерного вращения по окружности совпадают с характеристиками вращения эвольвентного зуба 5, что обеспечивает равномерность скорости вращения. 2 табл. 12 ил.
Настоящее изобретение относится к паре сопряженных роторов.
Сопряженные роторы могут быть применены в жидкоструйных насосах, вакуумных насосах и/или в гидро- или пневмодвигателях, а также в роторных двигателях внутреннего сгорания. Существующие шестеренчатые насосы конструктивно состоят из пары зубчатых колес, называемых роторами, которые находятся в зацеплении друг с другом и вращаются внутри кожуха. Такого рода насосы закачивают или выкачивают жидкость через полость не является сплошной, ее емкость недостаточно велика, а между зацепленными зубьями всегда остается какое-то количество сжатой жидкости, шестеренчатый насос не пригоден для перекачивания газа. В заявке на роторный двигатель внутреннего сгорания (WO90/02888, кл. F 16 F 9/02, 1991) раскрыт ротор, применяемый в роторном двигателе внутреннего сгорания. Такой ротор, однако, не снабжен эвольвентными зубьями, входящими в зацепление при вращении зубчатых колес, а в самой заявке не приведена расчетная формула, описывающая форму рабочего зуба и соответствующей ему впадины. В германской заявке N DT 2330992, кл. F 01 C 1/14, 1975 раскрыт ротор, снабженный эвольвентными зубьями, входящими в зацепление при вращении зубчатых колес, рабочим зубом и взаимодействующей с ним впадиной. Однако подобно международной заявке, в ней не приведена расчетная формула, описывающая форму рабочего зуба и соответствующей ему впадины. В ней также не содержится подробной информации о конструкции рабочего зуба и впадины. Кроме того при их зацеплении друг с другом не обеспечивается равномерность скорости вращения. Технической задачей настоящего изобретения является создание пары взаимодействующих роторов, вдоль внешних окружностей которых расположены эвольвентные зубья, рабочие зубья и соответствующие впадины, входящие в зацепление друг с другом при вращении роторов, а форма зубьев и впадин определяется согласно особым расчетным формулам, когда при вращении роторов рабочий зуб входит в зацепление с сопряженной с ним впадиной, при этом характеристика их равномерного вращения по окружности совпадает с характеристиками вращения эвольвентного зуба, чем достигается равномерность скорости вращения. Указанная задача достигается тем, что сопряженные роторы, состоящие из взаимодействующих друг с другом и вращающихся внутри кожуха рабочего колеса и колеса, сопряженного с ним, вдоль внешних окружностей которых выполнены эвольвентные зубья и впадины между ними, при этом вдоль внешних окружностей рабочего колеса также выполнены рабочие зубья, а на другом колесе - впадины, сопряженные с рабочими зубьями рабочего колеса, высота рабочего зуба выполнена превышающей высоту эвольвентного зуба, а глубина указанной сопряженной впадины между зубьями выполнена превышающей глубины впадины между эвольвентными зубьями, форма рабочего зуба задана следующей параметрической зависимостью:
Rb1 - радиус внешней окружности эвольвентного зуба сопряженного колеса;

ORd - линия, соединяющая точку Rd с центром O сопряженного колеса;

i - передаточное число;


причем толщина рабочего зуба по дуге внешней окружности определена дугой, соответствующей внутреннему углу 2


а форма сопряженной впадины задана следующей параметрической зависимостью:

нижняя кривая сопряженной впадины ограничена дугой, образованной углом 2i



по окружности сопряженного колеса равномерно распределено nb впадин, а по окружности рабочего колеса na рабочих зубьев, длина дуги, ограниченной углом



где
na и nb - целые положительные числа. На фиг. 1 показана принципиальная схема, иллюстрирующая образование кривой сопряженной впадины; на фиг. 2 - схематический чертеж кривой сопряженной впадины; на фиг. 3 - принципиальная схема, иллюстрирующая образование кривой рабочего зуба; на фиг. 4 - схематический чертеж кривой рабочего зуба; на фиг. 5 - принципиальная схема, иллюстрирующая толщину рабочего зуба по дуге окружности; на фиг. 6 - первый вариант основной конструкции механизма сопряженного ротора (ERM) (1 - сопряжение зубчатое колесо; 2 - рабочее зубчатое колесо; 3 - сопряженная впадина; 4 - рабочий зуб; 5 - эвольвентный зуб); на фиг. 7 - второй вариант основной конструкции ERM (3 - сопряженная впадина; 4 - рабочий зуб; 5 - эвольвентный зуб); на фиг. 8 - принципиальная схема, иллюстрирующая соотношение параметров, возникающих при сопряжении рабочего зуба и сопряженной впадины в процессе вращения роторов, когда i больше 1; на фиг. 9 - принципиальная схема, иллюстрирующая соотношение параметров, возникающих при сопряжении рабочего зуба и сопряженной впадины в процессе вращения роторов, когда i меньше 1; на фиг. 10 - принципиальная схема, иллюстрирующая соотношение между H, R, Rf и a; на фиг. 11 - вариант осуществления конструкции и размеры сопряженного зубчатого колеса; на фиг. 12 - вариант осуществления конструкции и размеры рабочего зубчатого колеса. В первую очередь следует пояснить происхождение формы и математический расчет кривых сопряженной впадины и рабочего зуба. Предположим, что имеется пара сопряженных зубчатых колес (A и B), рабочего колеса и сопряженного с ним колеса, находящихся в сопряженном вращении и имеющих одинаковые модули и равное число зубьев, а их передаточное число i равно 1; в целях удобства выведения формулы мы упрощаем пару колес до одного колеса, закрепленного в прямоугольной системе координат, где точка O является центральной точкой, а другое колесо вращается вокруг закрепленного колеса и одновременно вокруг собственной оси. В прямоугольной системе координат, показанной на фиг. 1, точка O является центром колеса B:

Пусть



при этом
R - радиус базовой окружности эвольвентного зубчатого колеса;
R2 - радиус внешней окружности рабочего зуба Колеса A (рабочего колеса);
R1 - радиус внешней окружности эвольвентного зуба;







Центральное соединение колеса A и колеса B OO' равно 2R, а угол, образованный линией OO' и осью X, равен



Если колесо A вращается против часовой стрелки вокруг колеса B под углом





По мере вращения колеса A вокруг колеса B и вокруг собственной оси под углом n



где
R2 - радиус внешней окружности рабочего зуба;
R1 - радиус внешней окружности эвольвентного зубчатого колеса;
R - радиус базовой окружности эвольвентного зубчатого колеса;























По мере вращения колеса B вокруг колеса A и вокруг собственной оси, линия R2 пересекает плоскость колеса B, а геометрическое место точек L на колесе B (причем La и Lb являются начальной и конечной точкой, соответственно) начинает проецировать на плоскость колеса A два геометрических места точек I и I' (как показано на фиг. 4), что описывается следующей формулой:

где
R1 - радиус внешней окружности эвольвентного зубчатого колеса;
R - радиус базовой окружности эвольвентного зубчатого колеса;










Когда исходная точка La геометрического места точек L доходит до наружной окружности R1 на колесе A, n



На этом этапе геометрическое место точек L на колесе B проецируется на плоскость колеса A. Вкратце, ERM (сопряженный роторный механизм) имеет в основе два колеса - колесо A и колесо B. По мере вращения колеса A как вокруг колеса B, так и вокруг собственной оси, вершина линии R2 на колесе A, точка Rd пересекает плоскость колеса B и образует геометрическое место точек L, называемое "кривой сопряженной впадины" (см. формулу 1); и, соответственно, по мере вращения колеса B вокруг колеса A и вокруг собственной оси, кривая сопряженной впадины L проецирует на плоскость колеса A две кривые, при этом La является их начальной точкой, а Lb - конечной точкой; указанные две проецированные кривые I и I' образуют кривую рабочего зуба (см. формулу 2). Предположим, что в формуле 2 I и I' пересекаются в точке Rd (как показано на фиг. 4), когда высота головки зуба S приближается к нулю. Поскольку сопряженный роторный механизм главным образом применяется для сжатия газов и жидкостей или для преобразования энергии сжатого газа или жидкости в крутящий момент, большая поверхность трения головки зуба S и кожуха обеспечивает более высокую степень герметизации. Для достижения этого предполагаем, что I и I' по отдельности развернуты назад на величину одного угла














Нижняя кривая сопряженной впадины, т.е. дуга, соответствующая величине



Формула расчета кривой рабочего зуба выводится из формулы 2 следующим образом:

Кривая рабочего зуба по толщине наружной окружности, т.е. дуга, соответствующая угловой толщине зуба по наружной окружности 2


Таким образом, мы получили математические модели сопряженной впадины (формулы 5A и 5B) и рабочего колеса (формулы 6A и 6B), где глубина сопряженной впадины равна (R2 - R), высота рабочего зуба - (R2 - R), а толщина рабочего зуба по наружной окружности равна S = 2R2sin




из чего мы выводим (см. фиг. 8 и 9). Ra



Когда угол вращения




тогда i



или

Как показано на фиг. 8 и фиг. 9, если i




















где
Ra - радиус базовой окружности эвольвентного зуба колеса A (рабочего колеса);
Rb - радиус базовой окружности эвольвентного зуба колеса B (сопряженного колеса);

i
















Нижняя кривая сопряженной впадины рассчитывается по формуле 7B:

Координаты кривой рабочего зуба можно вывести из формулы 6A следующим образом:

Кривая рабочего зуба по толщине наружной окружности рассчитывается по следующей ниже формуле 8B:

Передаточное число i > 1 или i < 1, относящееся к фиг. 8 и 9, а также к формулам 7A и 8A, должно отвечать следующим требованиям:
По окружности одного из эвольвентных зубчатых колес. Колеса A, должны быть равномерно распределено na рабочих зубьев, а по окружности другого зубчатого колеса (колеса B) должно быть равномерно распределено nb сопряженных впадин;
Длина дуги, ограниченной углом




Ниже следует подробное описание варианта осуществления сопряженных роторов (ER), которые могут применяться, например, в компрессорах холодильных установок. Предположим, что рабочее колесо A и сопряженное колесо B имеют равное число зубьев, одинаковые модули и углы зацепления, а передаточное число i = 1. Эвольвентное зубчатое колесо имеет следующие характеристики:
число зубьев Z = 40;
модуль m = 0,5;
угол зацепления

радиус базовой окружности

радиус окружности выступов

радиус окружности впадин

с целью снизить размер допуска между зубьями, радиальный зазор C в данном случае не принимается во внимание;
радиус окружности рабочего зуба R2 = 13,6. С учетом числа и прочности эвольвентных зубьев на колесе B кривая сопряженной впадины рассчитана таким образом, чтобы в нее вписывались четыре зуба, а наружная окружность рабочего зуба рассчитана таким образом, чтобы ее радиус выходил радиус Rb1 внешней окружности эвольвентного зуба и непосредственно рассекал радиус Rf окружности впадин колеса B (см. фиг. 11). Проведем линию, перпендикулярную линии OO' и пересекающую ее, от точки пересечения D точкой R2 (радиус внешней окружности рабочего зуба) с Rf (радиус окружности впадин колеса B), при этом H является высотой от точки D до линии OO' (см. фиг. 10). Тогда мы получим:

в результате a = 2,36775.

тогда


тогда


тогда k = 6, n = 0, 1, 2, ... r,







Подставим эти данные в формулу 7A расчета кривой сопряженной впадины:

тогда

Если n = 0, тогда

Если n = 1, тогда

.......... (опускается)
Если n = 6, тогда

Остальные координаты угла


допустим, что = 6o5'26,69", когда n = 1, 2, ... k, (k = 6), а Rb1 заменено на Rf.

Подставим эти данные в формулу 8A и получим:

Если n = 0, тогда

Если n = 1, тогда

............ (опускается)
Если n = 6, тогда

Координаты толщины зуба по внешней окружности S = 2R2sin



Формула изобретения


где n - целые числа;
a - расстояние между точкой пересечения линии, проходящей через точку Rd, с перпендикулярной ей линией 00' и точкой касания окружности радиусом Ra с окружностью радиусом Rb;
Ra - радиус базовой окружности эвольвентного зуба рабочего колеса;
Rd - точка пересечения линии R2 рабочего колеса с наружной окружностью эвольвентного зуба сопряженного колеса;
R2 - радиус внешней окружности рабочего зуба рабочего колеса;
OO' - линия, соединяющая центр O' рабочего колеса и центр O сопряженного колеса;
Rb - радиус базовой окружности эвольвентного зуба сопряженного колеса;


ORd - линия, соединяющая точку Rd с центром O сопряженного колеса;

i - передаточное число;


причем толщина рабочего зуба по дуге внешней окружности определяется дугой, соответствующей внутреннему углу 2

X = R2cos




Y = R2sin

где форма сопряженной впадины задана следующей параметрической зависимостью:
Xnb=(Ra+Rb)cos[i(








Ynb=R2sin[(








нижняя кривая сопряженной впадины ограничена дугой, образованной углом 2i


X = (Ra+Rb-R2)cos(i

Y = (Ra+Rb-R2)sin(i




по окружности сопряженного колеса равномерно распределено nb впадин, а по окружности рабочего колеса na рабочих зубьев, длина дуги, ограниченной углом





где na и nb - целые положительные числа.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11, Рисунок 12, Рисунок 13