Способ послойного лазерного спектрального анализа
Использование: промышленная технология, аналитическая химия, научные исследования, медицина, биология, криминалистика, экология и т.д. Сущность изобретения: способ включает атомизацию образца с одновременным разогревом атомных паров и переводом их в плазменное состояние путем воздействия импульсного лазерного излучения, поперечный профиль пучка которого близок к прямоугольному, с плотностью мощности на поверхности образца 7 10 - 1
108 Вт/см2 и энергией в импульсе 30-50 мДж, причем воздействие осуществляют сдвоенными импульсами, частота повторения которых не менее 10 Гц, а задержка второго импульса относительно первого составляет 5-40 мкс. После этого проводят сбор излучения лазерной плазмы, его транспортировку и спектральную селекцию с измерением относительной интенсивности аналитических линий. Затем осуществляют компьютерную обработку результатов анализа. 2 табл., 1 ил.
Изобретение относится к лазерному спектральному анализу элементного состава твердых проб (например, металлов) с помощью измерения эмиссионного спектра и может быть использовано в различных отраслях народного хозяйства: в промышленной технологии, аналитической химии, научных исследованиях, медицине, биологии, криминалистике, экологии и т.д.
Известен, например, способ послойного атомно-эмиссионного спектрального анализа твердых образцов (пленок пассивации нержавеющих сталей), включающий использование тлеющего разряда с плоским катодом-пробой в инертном газе при пониженном давлении. Этот способ позволяет анализировать послойное распределение 45 элементов с разрешением по глубине 0,05 - 1,0 мкм. Дробышев И.А. Послойный атомно-эмиссионный спектральный анализ в источниках света с катодным распылением проб. - Журнал прикладной спектроскопии, т. 56, N 1, 1992, с. 7 - 11). Недостатки известного способа заключаются в ограниченности использования способа в промышленных условиях из-за его высокой разрешающей способности, требующей длительного времени воздействия; применении способа только для решения исследовательских задач (анализа тонких пленок); низкой достоверности, воспроизводимости и стабильности результатов; длительности анализа, связанной с необходимостью больших временных затрат на испарение пробы. Известен также способ лазерного спектрального анализа с помощью измерения эмиссионного сигнала, включающий перевод образца в атомарное состояние источником энергии (лазером) с одновременным разогревом атомных паров, переводом их в плазму, и последующим спектральным анализом ее оптического излучения (метод LIBS). Указанный способ позволяет осуществлять анализ с пределом обнаружения 10-2%.(F.Brech and L.Gross, Applied Spectroscopy, vol. 16, N 1, p. 59, 1962) или R.H.Scott and A.Strashiem, Spectrochimica Acta, vol. 26B, р. 707, 1971). Однако использование описанного способа для послойного спектрального анализа образцов невозможно из-за низкой достоверности и воспроизводимости послойного элементного состава вследствие трансформации дна и стенок кратера и перемешивания слоев в результате глубокого проплавления образца в месте воздействия лазерного луча; сложности подбора параметров лазерного излучения; невысокой чувствительности и длительности способа; сложности, крупногабаритности и высокой стоимости установки. Наиболее близким по технической сущности и достигаемому результату к изобретению является способ лазерного спектрального анализа (спектрохимического), включающий атомизацию образца с одновременным разогревом атомных паров и переводом их в плазменное состояние путем воздействия импульсного лазерного излучения; сбор излучения лазерной плазмы, его транспортировку и спектральную селекцию с измерением относительной интенсивности аналитических линий и последующую компьютерную обработку результатов. Атомизацию образца осуществляют в потоке защитных газов (Ar + 3% H2) с оптимальной энергией импульса многомодового лазерного излучения около 300 мДж. Способ позволяет осуществлять поверхностный элементный анализ твердых образцов за 10 мин при чувствительности 10-2%.(Tsuyoshi Ozaki et al "Grant Pulse Laser Spectrochemical Anylysis of C, Si and Mn in Solid Steel", Transactions ISIJ, vol. 24, 1984, р. 463-470) Использование способа-прототипа для послойного лазерного спектрального анализа твердых образцов невозможно из-за невысокой достоверности и воспроизводимости; длительности; невозможности регулирования глубины проникновения лазерного излучения из-за применения многомодового излучения, содержащего области с высокой плотностью мощности и с низкой, многократное воздействие которого неравномерно изменяет глубину кратера. Задачей изобретения является создание нового промышленно применимого экспрессного способа послойного анализа, осуществляемого на малогабаритных и мобильных установках, обеспечивающего достоверность и воспроизводимость результатов. Задача решается тем, что в известном способе послойного лазерного спектрального анализа, включающем атомизацию образца с одновременным разогревом атомных паров и переводом их в плазменное состояние путем воздействия импульсного лазерного излучения; сбор излучения лазерной плазмы, его транспортировку и спектральную селекцию с измерением относительной интенсивности аналитических линий и последующую компьютерную обработку результатов, согласно изобретению на образец воздействуют лазерным излучением, поперечный профиль пучка которого близок к прямоугольному, с плотностью мощности на поверхности образца 7


- при прохождении импульсного излучения через алюминиевый слой за 1 импульс удалялся микрослой толщиной 0,15 мкм, следовательно, через 350 импульсов произошло пробивание второго слоя;
- при прохождении импульсного излучения через медный слой за 1 импульс удалялся микрослой толщиной 0,17 мкм, следовательно, через 500 импульсов произошло пробивание третьего слоя. Затем осуществляли обработку результатов анализа на компьютере 17. Общее время анализа составило 0,5 мин. В условиях, аналогичных примеру 1, осуществляли послойный лазерный спектральный анализ в примерах 2 и 3 с варьированием параметров способа в заявляемых пределах, причем для подтверждения воспроизводимости была проведена серия опытов, включающая 1000 примеров конкретного выполнения в указанных выше условиях. Одновременно осуществляли послойный лазерный спектральный анализ по способу-прототипу (Transactions ISIJ, vol. 24, 1984, p. 463 - 470). Условия осуществления способов приведены в табл. 1, а результаты анализов - в табл. 2. Как видно из приведенных примеров и данных табл. 1 - 2, использование заявляемого способа для послойного лазерного спектрального анализа твердых образцов позволяет достоверно определять элементный состав при необходимой воспроизводимости результатов, обеспечении экспрессности и снижении энергозатрат по сравнению со способом-прототипом (там же), при этом:
- энергия в импульсе уменьшается с 300 до 30 - 50 мДж;
- время анализа сокращается с 13 мин до 0,5 мин;
- обеспечивается возможность регулирования глубины проникновения лазерного излучения;
- снижаются габариты и уменьшается стоимость установки, применяемой для анализа.
Формула изобретения


РИСУНКИ
Рисунок 1, Рисунок 2