Изобретение относится к геофизике и предназначено для определения электрических и геометрических параметров околоскважинных зон в скважинах сложной конфигурации. Способ заключается в том, что зонд в виде цилиндрической антенной решетки возбуждают широкополосными электромагнитными импульсами длительностью порядка 10-9 с. Измеряют приемной антенной компоненту магнитного поля и сопоставляют результаты измерений с результатами математического моделирования. На основе минимизации вектора невязки определяют электрические и геометрические параметры неоднородностей околоскважинного пространства. 2 ил.
Изобретение относится к геофизике и предназначено для исследования в скважинах при изучении геологического разреза, выявления полезных ископаемых, контроля технического состояния скважин и разработки месторождений.
Предлагается способ геофизических исследований нефтяных и газовых скважин сложной конфигурации (вертикальных, наклонных и горизонтально направленных) для определения электрических параметров (диэлектрической проницаемости и электропроводности) и границ разделов слоисто-неоднородных сред в околоскважинных зонах.
Способ основан на регистрации и математической обработке широкополосных электромагнитных импульсов с длительностью, не превышающей 10
-9 с, возбуждаемых и принимаемых цилиндрической антенной решеткой.
Изобретение поясняется результатами математического моделирования процессов распространения электромагнитных импульсов в неоднородных околоскважинных пространствах.
Наиболее близким аналогом является способ микродиэлектрического сканирования околоскважинных зон, предложенный: R. Freedman, Method and apparaus for measuring azimuthal as well as longitudinal waves in formation traversed by a borehole, United States Patent Number: 5,168,234; Date of Patent: Dec. 1, 1992. В цитируемом патенте R. Freedman предложен способ исследования околоскважинных зон с применением цилиндрических антенных решеток, возбуждающих высокочастотное электромагнитное поле с фиксированной частотой, равной 1,1

10
9 Гц. При этом попеременно возбуждают и измеряют продольные и азимутальные волны. Принципиальным ограничением способа, предложенного R. Freedman, является относительно малая глубина проникновения высокочастотного электромагнитного поля (равная

= 0,03 - 0,1 м) в околоскважинном пространстве для скважин, разбуриваемых с применением промывочных жидкостей с удельным электрическим сопротивлением

0,1 , См/м (заметим, что бурение огромного большинства нефтяных и газовых скважин в России и за рубежом производится с применением промывочной жидкости с

> 0,1 См/м). Оценку глубины проникновения

для высоких частот порядка 10
9 Гц можно выполнить согласно формуле

где
o= 120

= 376,99 ,
r - относительная проницаемость среды. Из формулы (1) следует, что глубина проникновения электромагнитного поля в околоскважинное пространство с проводимостью

= 1 См/м составляет всего

= 0,048 м. Принимая во внимание такое незначительное проникновение электромагнитной волны высокой частоты, автор патента R. Freedman указывает ограниченную область применения своего изобретения, состоящую в микродиэлектрическом сканировании околоскважинных зон с целью определения структурной анизотропии и трещиноватости вблизи стенки скважины.
Предлагаемый способ геофизического исследования скважин, основанный на применении широкополосных электромагнитных импульсов, в отличие от способа, представленного в патенте R. Freedman, обладает двумя принципиально важными преимуществами, которые обеспечивают: а) глубину исследования неоднородного пространства порядка 1 - 3 м с разрешающей способностью

L

0,03 м ; б) количественное определение электрических и геометрических параметров околоскважинного пространства в азимутальном и продольном направлении скважин.
Представлен способ геофизических исследований скважин сложной конфигурации для определения электрических и геометрических параметров околоскважинных зон с применением цилиндрической антенной решетки, которую возбуждают широкополосными электромагнитными импульсами длительностью порядка 10
-9 с, измеряют приемной антенной компоненту магнитного поля, сопоставляют результаты измерений с результатами математического моделирования и на основе минимизации вектора невязки определяют электрические и геометрические параметры неоднородностей околоскважинного пространства.
Известные цилиндрические зонды с электромагнитным возбуждением на фиксированной частоте не обладают высокой проникающей способностью в горные породы и другие неоднородные диэлектрические среды, подвергаемые исследованию.
В заявляемом изобретении предлагается способ исследования горных пород зондами с цилиндрической антенной решеткой, возбуждающей сверхкороткие пространственно-направленные широкополосные электромагнитные импульсы. Способ основан на выделении информативных сигналов на приемных антенных устройствах зонда: прямого сигнала; боковых волн и волн, одно- и многократноотраженных от границ раздела неоднородностей, с регистрацией моментов их прихода и последующим анализом амплитуды и фазы каждого приходящего сигнала. Приемные антенные устройства расположены на цилиндрической поверхности зонда на разных расстояниях y
м от передающей антенны. Обработка результатов измерения отклика электромагнитного поля производится на основе применения математической модели антенной решетки в скважине, окруженной слоисто-неоднородным пространством. В результате сопоставления измеренного отклика электромагнитного поля на импульс, возбуждаемый антенной решеткой, с соответствующими данными математического моделирования и минимизацией вектора невязки определяют электрические и геометрические параметры неоднородного околоскважинного пространства.
Применение коротких видеоимпульсов длительностью порядка 10
-10 - 10
-9 с является весьма эффективным методом радиолокационного обнаружения и распознавания естественных и искусственных подповерхностных образований. Широкополосность столь коротких импульсов обеспечивает глубину проникновения порядка 1 - 3 м в среды с большими потерями с проводимостью

, превышающей 1 См/м, и высокую разрешающую способность при исследовании неоднородной среды.
Низкочастотная часть широкополосного электромагнитного импульса обладает большой глубиной проникновения

.
Согласно этой формуле, для компонент спектра импульса с частотой f = 10
5 Гц глубина проникновения составляет

= 1,59 м. Сопоставление глубины проникновения высокочастотного электромагнитного поля (формула 1) и низкочастотного поля (формула 2) показывает существенно большую эффективность применения широкополосных сигналов с длительностью импульса 10
-10 - 10
-9 с.
Кроме того, высокочастотная часть спектра передающей антенны служит для обострения излучаемого импульса, что необходимо для того, чтобы его амплитуда уменьшилась до требуемого низкого уровня к моменту прихода к приемной антенне слабого отраженного импульса. Форма импульса и его длительность определяют разрешающую способность предлагаемого способа.
Разрешающая способность характеризуется величиной минимально возможной толщины слоя неоднородности, определение которой обеспечивает данный электромагнитный импульсный метод зондирования. При длительности импульса 10
-9 с разрешающая способность

L будет порядка 0,03 м. С уменьшением длительности импульса разрешающая способность метода возрастает, т.е.

L < 0,03 м.
Для раскрытия сущности предлагаемого способа рассмотрим математическую модель, отражающую принципы предлагаемого способа каротажа скважин сложной конфигурации.
Исследование нестационарных процессов распространения электромагнитных импульсов основано на рассмотрении трехслойной среды с границами разделов сред, представляющими собой бесконечные параллельные плоскости. Предположим, что применяется щелевая антенная решетка. Согласно электродинамическому принципу эквивалентности, излучение из щели, прорезанной в идеально проводящей поверхности, можно заменить действием горизонтального магнитного диполя с моментом тока I. Вводится декартова система координат с плоскостью xy (т. е. плоскостью z = 0, где ось z перпендикулярна поверхностям разделов сред), являющейся идеально проводящей и имитирующей боковую поверхность зонда. Нестационарный магнитный диполь расположен на идеально проводящей поверхности зонда в начале системы координат с моментом

- дельта-функция Дирака, f(t) - заданная функция времени, m
0 - амплитуда дипольного момента. Функция f(t) описывает следующие нестационарные процессы возбуждения электромагнитного поля: включение монохроматического диполя в момент времени t = 0; прямоугольный импульс произвольной длительности

, гауссов импульс вида f(t) = exp[
2(t-
o)
2] и др. При этом переменный магнитный момент тока I(t) диполя равен dm/dt = I(t).
Преобразование Лапласа уравнений Максвелла по переменной времени дает изображение компонент векторного потенциала A
(x1)(M,p) и A
(z1)(M,p) в первом слое (прилегающем к плоскости xy):

, где G(R, p) = exp(ik
1(p)R)/R - функция Грина,

, M = (x,y,z),

, p - комплексная переменная преобразования Лапласа, J
0,1(z) - функции Бесселя, J
x(p) = pm(p) - преобразование Лапласа момента магнитного тока J
x(t) = dm
x(t)/dt,

, Re
1> 0 ,

, Imk
1>0,
1(p) =
0
r1+
1/p ,
r1 и
1 являются относительной диэлектрической проводимостью и проницаемостью 1-го слоя; всюду
1=
0/ . Неизвестные функции g
x, g
z определяются из условий непрерывности тангенциальных компонент электрического и магнитного полей на границах разделов сред.
Нас интересуют значения x-компоненты магнитного поля в приемных антеннах с различными координатами M = (0, y
м, 0):

.
Нестационарные решения могут быть формально представлены в виде обратного преобразования Лапласа:

.
Создан комплекс компьютерных программ для вычисления компонент магнитного поля в точке наблюдения для различных параметров слоистых сред видов импульсов.
Из формул следует, что сигнал, принимаемый в точке наблюдения M, представляет собой сумму из прямого сигнала, а также набора волн, испытавших 0, 1, 2,...n отражений от границ разделов сред и от идеально проводящей плоскости. Например, в случае двухслойной среды моменты прихода сигнала, испытавшего m отражений от границы раздела двух сред, будут равны:

, m = 0,1, . .., h - толщина первого слоя. Кроме того, полное нестационарное электромагнитное поле в точке наблюдения может также включать в себя боковые волны различных индексов. Время прибытия боковой волны индекса m (m = 1,2,.. .) равно

.
Эти волны существуют, когда
r1>
r2 и t
(mlat)< t
m . Наблюдаемые моменты времени прихода сигналов различных типов, их амплитуды и фазы позволяют определять параметры многослойной среды.
На каждой из приемных антенн, расположенных в точках M = (0, y
м, 0) (y
м - расстояние от данной приемной антенны до передающей антенны) на образующей зонда, измеряется отклик x-компоненты магнитного поля. Примеры результатов расчетов x-компоненты поля в зависимости от времени для различных сред представлены на фиг. 1, 2.
На фиг. 1 представлен отклик компоненты поля H
x на воздействие гауссовым импульсом магнитного диполя в двухслойной среде (
1= 0,1 См/м,
r1= 80,
2= 0,005 См/м,
r2= 1) с толщиной слоя h = 0,55 м, y
м = 1 м, время нормировано:

, c = 3

10
8.
На фиг. 2 представлен диффузионно-волновой эффект распространения отклика магнитного поля на возбуждение гауссовым импульсом магнитного диполя в двухслойной среде с большой проводимостью первого слоя
1= 1 См/м,
r1= 40,
2= 0,005 См/м,
r2 = 4 в точке M(0, y
м, 0), y
м = 0,5 м, для различных значений толщины слоя h = 0,1 м; 0,2 м; 0,3 м;

.
Применение созданного комплекса программ, реализующих математическую модель распространения электромагнитных импульсов, и анализ на его основе наблюдаемых моментов времени прихода сигналов различных типов, их амплитуд и фаз (для которых составлена система нелинейных алгебраических уравнений) позволяют определять геометрические и электрические параметры неоднородного околоскважинного пространства.
Способ геофизических исследований скважин сложной конфигурации заключается в анализе и сопоставлении результатов измерений отклика электромагнитного поля на импульс, возбужденный антенной решеткой, с соответствующими данными математического моделирования с последующей минимизацией вектора невязки для определения электрических и геометрических параметров неоднородного околоскважинного пространства.
Формула изобретения
Способ геофизических исследований скважин сложной конфигурации цилиндрическими зондами с электромагнитным возбуждением, предназначенный для определения электрических и геометрических параметров околоскважинных зон, отличающийся тем, что зонд выполнен в виде цилиндрической антенной решетки, которую возбуждают широкополосными электромагнитными импульсами длительностью порядка 10
-9 с, измеряют приемной антенной компоненту магнитного поля, сопоставляют результаты измерений с результатами математического моделирования и на основе минимизации вектора невязки определяют электрические и геометрические параметры неоднородностей околоскважинного пространства.
РИСУНКИ
Рисунок 1,
Рисунок 2