Способ замораживания водных растворов гелеобразующих биологических веществ до аморфного состояния и плавления аморфных образцов этих веществ
Способ может быть использован для получения аморфного состояния биологических материалов, в том числе живых клеток. Способ позволяет проводить плавление аморфных образцов без их кристаллизации. Образец в диэлектрическом контейнере помещают в камеру высокого давления с жидкой диэлектрической средой, передающей гидростатическое давление на образец, при температуре ниже температуры кристаллизации Tк. Давление в камере поднимают до 100 атм и прикладывают к образцу вращающееся импульсное электрическое поле. Аморфный образец нагревают до температуры Tк, при которой начинается плавление аморфной структуры образца, при этом вращающееся импульсное электрическое поле препятствует формированию кристаллической структуры льда. При дальнейшем нагревании аморфного образца до положительных температур происходит его плавление без кристаллизации. 3 ил.
Изобретение относится к технологии замораживания и может быть использовано для получения аморфного состояния биологических материалов, в том числе живых клеток.
Известно, что при охлаждении клеточных структур ниже 0oC вода кристаллизуется. Появление льда в клетке вызывает ионный шок и разрушает клетки [1] . Поэтому для сохранения живых клеток необходимо образцы биологических материалов быстро перевести в аморфное состояние, чтобы избежать ионного шока и разрушения клеток. Известно, что при нагревании аморфные вещества кристаллизуются вблизи некоторой температуры Tк [2]. При этой температуре идут одновременно процессы плавления аморфной структуры и образования кристаллической решетки. Известен способ аморфизации веществ, имеющих фазовые P-T диаграммы, подобные водной [3]. Образец в жидкой фазе охлаждается под давлением выше атмосферного до температуры фазового превращения "жидкость-твердое тело", а затем давление уменьшается до атмосферного за время, меньшее, чем время перемещения молекулы вещества на межузельное расстояние в твердой кристаллической фазе. Недостатком этого способа является применение гидростатического давления свыше 1000 атм, что не позволяет аморфизировать живые организмы для хранения их при ультранизких температурах. Этот нижний предел рабочих давлений определяется тем, что температура кристаллизации Tк аморфных образцов водных растворов гелеобразующих веществ, входящих в состав клетки [4], находится вблизи -10oC. На фиг. 1 представлены результаты калориметрических измерений при плавлении аморфных образцов состава: кровь + 4% желатина + 8% глюкозы. Аморфные образцы получены вышеприведенным способом [3]. Общий тепловой эффект превращения 1 равен алгебраической сумме: теплоты плавления аморфной структуры 2, скрытой теплоты кристаллизации аморфной структуры 3 и теплоты плавления кристаллической решетки 4. Видно, что процессы плавления аморфной структуры и кристаллизации начинаются в окрестности -10oC. Для аморфизации указанных выше водных растворов необходимо путем сброса давления до атмосферного получить аморфное состояние с температурой ниже Tк. Таким образом, температура образца в жидкой фазе должна быть не выше -10oC, что соответствует давлению, равному 1000 атм, на линии фазового превращения "вода - лед". Этот способ получения веществ в аморфном состоянии [3] является прототипом изобретения. Изобретение устраняет вышеотмеченные недостатки известного и от его использования может быть следующий технический результат: уменьшение рабочего давления при аморфизации образцов и плавление аморфных образцов без кристаллизации. Указанный технический результат достигается за счет того, что на образец, находящийся под гидростатическим давлением, воздействуют вращающимся импульсным электрическим полем, которое препятствует образованию гексагональной структуры льда и понижает температуру кристаллизации, что позволяет уменьшить рабочее давление, при этом вращающееся импульсное электрическое поле предотвращает накопление на поверхности образца свободных электрических зарядов, экранирующих внешнее электрическое поле, и повышает электрическую прочность образца; полученные аморфные образцы биологических материалов нагревают и плавят под указанным давлением для предотвращения их кристаллизации. При охлаждении воды ниже 0oC и давлениях менее 2200 атм образуется лед Ih с гексагональной кристаллической структурой [5]. Каждая молекула воды в этой структуре окружена четырьмя молекулами, которые образуют правильный тетраэдр. Молекула H2O может занимать 6 равновероятных положений в центре этого тетраэдра. Под действием локального электрического поля Eс, созданного ближайшими соседними молекулами, формируются водородные связи, которые имеют определенные длины и образуют между собой углы, равные 109o52' [6]. Протон, участвующий в водородной связи, может находиться в одном из двух положений, соответствующих минимумам его потенциальной энергии. Средняя энергия колебательного движения молекулы H2O равна 3kT, где k - постоянная Больцмана и T = 273 K - температура льда. В кристаллической структуре льда молекула воды участвует в трех водородных связях. Значит, на одну водородную связь приходится в среднем энергия kT и глубина потенциальной ямы, в которой находится протон, тоже порядка kT. Молекула воды обладает большим электрическим дипольным моментом p = 0,63













Поэтому

В постоянном внешнем электрическом поле


т.е. свободные поверхностные заряды экранируют внешнее электрическое поле и температура кристаллизации воды не изменятся. Электрические подвижности свободных электронов и протонов в водных растворах, рассчитанные из эквивалентных электропроводимостей, приблизительно равны:
u




Ионы K+, Na+ и др., находящиеся во внутриклеточной жидкости [4], имеют подвижности в несколько раз меньшие при умеренном внешнем электрическом поле. В сильном электрическом поле подвижности ионов резко возрастают. Если создать вращающееся внешнее электрическое поле


где
d - диаметр образца;
Eo - напряженность внешнего электрического поля;
u

n - коэффициент увеличения подвижности заряженных частей в сильном электрическом поле. В этом случае частота вращения электрического поля


При d = 10 см, Eo = 5



С другой стороны, необходимое для поворота молекулы воды время (время релаксации) составляет





Вращающееся электрическое поле





















где





где








а) образец 5 (фиг.2) в диэлектрическом контейнере 4 помещают в камеру высокого давления 1 с жидкой диэлектрической средой 3, передающей гидростатическое давление на образец;
б) в камере высокого давления 1 давление повышают до 100 атм и образец охлаждают до 0oC;
в) создают вращающееся импульсное электрическое поле с максимальной напряженностью Eo <E и образец охлаждают до температуры фазового превращения "вода - лед", которая определяется внешними параметрами: напряженностью внешнего импульсного электрического поля Eoи величиной рабочего давления;
г) после установления равновесного состояния образца давление уменьшают до атмосферного за время меньшее, чем время перемещения молекулы воды на межузельное расстояние в твердой кристаллической фазе [3];
д) аморфный образец охлаждают для хранения его при ультранизких температурах. Процесс плавления аморфных образцов без кристаллизации проводится следующим образом:
а) аморфный образец в диэлектрическом контейнере помещают в камеру высокого давления с диэлектрической жидкой средой при температуре ниже температуры его кристаллизации Tк;
б) давление в камере высокого давления поднимают до 100 атм и создают вращающееся импульсное электрическое поле;
в) аморфный образец нагревают до температуры Tк, при которой начинается плавление аморфной структуры, при этом вращающееся импульсное электрическое поле препятствует формированию кристаллической структуры льда;
г) при дальнейшем нагревании аморфного образца до положительных температур происходит его плавление без кристаллизации. Источники информации
1. Пушкарь Д. Н. , Белоус А.Н. Введение в криобиологию.- Киев: Наукова думка, 1975. 2. Скрипов В.П., Коверда В.П. Спонтанная кристаллизация переохлаждения жидкостей.- М.: Наука, 1984, с.158. 3. Куденко Ю. А. , Серебренников В.Л. Заявка на изобретение N 5009542, CCCР, 1991. 4. Большая медицинская энциклопедия/ Под ред. Петровского Б.В.- М., 3-е изд., 1979, т.10, с.430; т.4, с.315. 5. Калашников Я.А. Физическая химия веществ при высоких давлениях.- М.: Высшая школа, 1987, с.54. 6. Маэно Н. Наука о льде.- М.: Мир, 1988, с. 94,46,115. 7. Киттель Ч. Введение в физику твердого тела.- М.: Наука, 1978.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3