Буровой раствор
Изобретение относится к бурению нефтяных и газовых скважин, а именно к составам буровых растворов. Для получения высокоингибированного бурового раствора заменяют при основных ингибирующих компонентов (CaCl2, Ca(OH)2, NaOH) и пеногаситель в известной рецептуре хлоркальциевого раствора на один компонент-комплексную соль. Буровой раствор содержит глину, КССБ, КМЦ и комплексную соль при следующем соотношении ингредиентов. мас.%: бентонит 8-20; КССБ-4 5-7; КМЦ-600 1-2; комплексная соль 1,75-365; вода - остальное. При замене в известной хлоркальциевой рецептуре раствора трех основных ингибирующих компонентов на комплексную соль сохраняется эквивалентное содержание по CaCl2 (1-2 мас.%) и поддерживается необходимая концентрация катионов кальция в фильтрате (3000-5000 мг/л), при этом ингибирующие свойства предлагаемого раствора почти в 2 раза превышают аналогичные свойства известной хлоркальциевой рецептуры бурового раствора. 1 ил., 2 табл.
Изобретение относится к бурению нефтяных и газовых скважин, а именно к составам буровых растворов.
Известны кальциевые растворы, содержащие кроме глины, воды, нефти, утяжелителя, реагентов-понизителей вязкости, фильтрации и регуляторов щелочности специальные ингибирующие вещества-носители ионов кальция. Действие их заключается в предотвращении перехода выбуренной глины в натриевую, переводе натриевой глины в кальциевую, в результате чего снижаются гидротация и набухание сланцев. Кальциевые растворы используются при разбуривании глинистых отложений и аргиллитов. В зависимости от реагентов-носителей ионов кальция эти растворы делятся на известковые, гипсовые и хлоркальциевые. Наиболее близким к изобретению является хлоркальциевый раствор ХРК [1, с. 47], содержащий глинопорошок, КССБ, КМЦ, CaCl2, Ca(OH02, NaOH, пеногаситель и воду. Данный раствор обладает ингибирующими свойствами по отношению к разбуриваемым глинистым породам, которые в нем меньше гидратируются и слабее набухают. Однако наличие в известной рецептуре щелочи - NaOH делает дисперсную среду бурового раствора высокощелочной (pH > 10) [2], что может привести к пептизации глинистых частиц в растворе и снизить устойчивость глинистых пород стенок скважин за счет их щелочного гидролиза. Недостатком прототипа является также многокомпонентность состава раствора, что делает процесс приготовления бурового раствора более трудоемким. Для получения высокоингибированного бурового раствора заменяют три основных игибирующих компонента (CaCl2, Ca(OH)2 NaOH) и пеногаситель в известной рецептуре хлоркальциевого раствора на один компонент - комплексную соль. При замене в растворе сохраняется эквивалентное содержание по CaCl2 (1-2 мас.%), а в фильтрате поддерживается необходимая концентрация катионов кальция (3000 - 5000 мг/л). Это позволяет улучшить ингибирующий эффект при разбуривании глиносодержащих пород, сократить компонентный состав бурового раствора, улучшить технологические параметры за счет уменьшения структурно-реологических показателей (условная вязкость T500, пластическая вязкость k , эффективная вязкость kэф, динамическое напряжение сдвига
CaCl2 - 52 - 62
NaCl - 34 - 36
CaSO4 - 0,4 - 2,5
Ca(OH)2 - 0,08 - 0,36
Fe2O3 - 0,07 - 0,04
SiO2 - 0,03 - 1,9
Раствор приготавливают путем смешивания ингредиентов. Пример приготовления раствора для верхнего (максимального) предела содержания компонентов. Для приготовления 1000 г раствора смешивают 920 г воды и 200 г бентонита, затем глинистую суспензию обрабатывают КМЦ (20 г) и КССБ (70 г). После получения оптимальных показателей (условная вязкость T500= 25 - 30 с, статическое напряжение сдвига CHC1-10= 12 - 24/30 - 60 дПа, водоотдача B = 3 - 5 cv3/30 мин раствор обрабатывают комплексной солью (35 г). Результаты исследования свойства известной и предлагаемых рецептур растворов приведены в табл. 1. Анализ данных табл. 1 показывает, что предлагаемый раствор обладает более простым компонентным составом, имеет более низкие значения условной вязкости, статического напряжения сдвига, реологических показателей (пластическая вязкость



Из данных табл. 2 следует, что коэффициент набухания в среде водного раствора CaCl2 (1,8%) уменьшился по сравнению с набуханием в дистиллированной воде на 31,3%, в водном расчете комплексной соли (3,5%), содержащем эквивалентное расчетное количество по CaCl2, на 44,8%, в среде глинистого раствора, содержащего 8% бетонита и 3,5% комплексной соли, на 55,8%. Полученные результаты свидетельствуют о том, что ингибирующие свойства предлагаемого бурового раствора почти в 2 раза (табл. 2) превышают аналогичные свойства известного хлоркальциевого раствора, при этом за счет применения реагента, получаемого из промышленных отходов содового производства, существенно снижаются производственные затраты а на приготовление бурового раствора. Применение предлагаемой рецептуры бурового раствора способствует значительному сокращению осыпей и обвалов при разбуривании неустойчивых аргиллитоподобных отложений. Уменьшение гидратации и набухания глинистых отложений достигается путем повышения ингибирующих свойств данной рецептуры бурового раствора. Комплексная соль изготовляется из промышленных отходов содового производства, поэтому применение ее в качестве компонента бурового раствора позволяет уменьшить себестоимость ингибированного бурового раствора, что особенно актуально в условиях дефицита серийного хлористого кальция. Использование предлагаемой рецептуры с меньшим компонентным составом в сравнении с прототипом делает приготовление бурового раствора более технологическим и менее трудоемким. Литература
1. Булатов А. И., Пеньков А. И., Проселков Ю. С. Справочник по промывке скважин. М.: Недра, 1984, 317 с., прототип. 2. Ангелопуло О. К. Кальциевые глинистые растворы. М.: Гостоптехиздат, 1962, 64 с. 3. Патент России N 2009159, кл. C 09 K 7/02, 1994. 4. Городнов В. Д, Физико-химические методы предупреждения осложнений в бурении. М.: Недра, 1984, 229 с.
Формула изобретения
NaCl 34 36
CaSO4 0,4 2,5
Ca(OH)2 0,08 0,36
Fe3O3 0,07 0,4
SiO2 0,03 1,9
при следующем соотношении ингредиентов, мас. Бентонит 8 20
КССБ-4 5 7
КМЦ-600 1 2
Указанная комплексная соль 1,75 3,5
Вода Остальноео
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3