Способ получения алкилхлормоносиланов
Использование: в качестве сырья для получения лаков, красок, клеев, модификаторов. Способ получения алкилхлормоносиланов заключается в том, что кремнийорганическое полимерное соединение или смеси кремнийорганических полимерных соединений обрабатывают хлористым водородом в присутствии катализатора при температуре 100 - 250oC и под давлением, большем, чем, давление насыщенных паров исходного соединения или смеси исходных соединений при температуре процесса. В качестве катализатора используют третичные амины или фосфины, или тетраалкиламмонийхлорид или комплексные соединения хлористого водорода и третичных аминов или фосфинов, например, триэтиламин, тетраэтиламмонийхлорид, три-(н-бутил)амин, тетра-(н-бутил)аммонийбромид. Процесс можно проводить в присутствии органического апротонного растворителя (например, бензол, хлорбензол, о-ксилол и т.д.). Кремнийорганическое полимерное соединение или смесь кремнийорганических полимерных соединений представляет собой вещество или смесь веществ, описываемых следующей формулой: R-[-RClSi-(CH2)x-] n1-[-Cl2Si- (CH2)x-] n2-[-R2Si-(CH2)x-] n3- -SiR3-yCly, где чередование звеньев может быть как регулярное, так и не регулярное; x = 0oC2; y = 0oC3; n10; n2
0; n3
0; (n1 + n2 + n3)
1; (n1 + n2 + y)
1; R = алкил C1 - C3. В качестве смеси полимерных соединений можно использовать промышленные отходы, содержащие вещества, отвечающие данной формуле. 8 з.п. ф-лы, 2 табл.
Изобретение относится к области химической технологии кремнийорганических соединений, а именно, к способам получения мономерных алкилхлорсиланов из полимерных кремнийорганических соединений - полисиланов, поликарбосиланов или их смесей.
Алкилхлорсиланы являются сырьем для получения самых разнообразных продуктов - лаков, красок, клеев, модификаторов, лекарственных препаратов и многих других веществ. Обычный метод синтеза алкилхлорсиланов - синтез от простого к сложному; или реакция между металлическим кремнием и газообразным алкилхлоридом, или внедрение кремнийорганического соединения в молекулу органического субстрата методом гидросилилирования, или алкилирование кремнийорганического соединения органохлоридами по реакции Гриньяра. Другим способом синтеза алкилхлорсиланов является расщепление полимерных кремнийорганических соединений на мономерные алкилхлорсиланы, причем в качестве полимерных кремнийорганических соединений используются как специально синтезированные вещества или их смеси, так и отходы производства, содержащие такие вещества. Известен способ получения алкилхлорсиланов путем расщепления полисиланов и поликарбосиланов хлористым водородом в отсутствии катализатора при повышенных температурах 200-900oC и повышенных давлениях 1,0-11,5 атм. В условиях синтеза исходные соединения перерабатываются как в режиме кипения смеси, так и в газовой фазе (патент ФРГ N 936444, 12026/03, 1955) [1]. Данный способ имеет ряд существенных недостатков. Повышенные температуры приводят к протеканию побочных процессов дегидрирования первичных продуктов реакции гидрохлорирования исходных веществ. В результате в конечной смеси водородсодержащие соединения (метилдихлорсилан) присутствуют в количестве не более 2,5%. Основными продуктами реакции оказываются метилтрихлорсилан, четыреххлористый кремний и диметилдихлорсилан. Конверсия исходных полисиланов и поликарбосиланов составляет около 50%. Известен способ получения метилдихлорсиланов путем переработку дисилановых соединений при меньших температурах за счет использования катализатора. В качестве катализаторов используют алкилмочевины (тетраметил-, N,N-диэтил- или N,N'-диэтилмочевины) или гексаметилформамид, взятые в количестве 0,01-3%. При температурах 90-160oC в режиме кипения исходных веществ удается увеличить конверсию сырья и содержание водородсодержащих соединений в продуктах реакции дисиланов с хлористым водородом. Конверсия наименее алкилированных дисиланов (например, симтетрахлордиметилдисилана) может достигать 95% при 160oC. Выход метилдихлорсилана достигает 90-94% от теории. (Патент ГДР N 274227, 1989) [2]. Недостатком данного способа является невозможность переработки поликарбосиланов. Кроме того, описываемые результаты получают только для индивидуальных дисиланов и их смесей, при использовании технических смесей, например, кубовых остатков прямого синтеза метилхлорсиланов (МКО), селективность процесса по метилдихлорсилану резко ухудшается, в результате чего для переработки необходимо выделять узкие фракции, содержащие не менее 90% дисиланов. Известен способ получения метилхлорсиланов путем переработки органогалогенполисиланов. Способ описан в патенте. Под действием катализаторов, содержащих третичный или четвертичный атом азота (например, третичные амины или их соли) полисиланы в режиме кипения вступают в реакцию с галогеноводородом с образованием смеси галогенмоносиланов и гидридмоносиланов. В качестве полисиланов можно использовать как индивидуальные соединения, так и их смеси с веществами других классов, например, в виде МКО, предварительно очищенных от мономерных кремнийорганических соединений. Содержание катализатора в реакционной смеси составляет 0,1-100%, температура процесса 75-200oC, давлении соответствует температуре кипения реакционной смеси. При проведении процесса в соответствии c данным патентом удается достичь конверсии исходных полисиланов 85-92%, содержание водородсодержащих соединений в смеси продуктов реакции соответствует их выходу не более 78-86% от теоретического. (Патент США 2709176, 260-448.2, 1955) [3]. Недостатком данного способа является невозможность переработки поликарбосиланов и довольно низкая селективность процесса по водородсодержащим продуктам реакции (по метилдихлорсилану). Таким образом, ни один из известных способов не позволяет проводить переработку как индивидуальных полисиланов, так и их смесей с конверсией исходных веществ более 95% [2] и с выходом наиболее ценных водородсодержащих продуктов реакции гидрохлорирования связи Si-Si более 94% [3]. Конверсия поликарбосиланов не превышает 50% [1]. Задачей данного изобретения является увеличение конверсии исходных соединений, обеспечение селективности процесса при одновременном расширении номенклатуры перерабатываемых соединений, причем перерабатываемых как в виде индивидуальных веществ, так и в виде любых их смесей. Предложен способ получения алкилхлормоносиланов путем обработки кремнийорганического полимерного соединения или смеси кремнийорганических полимерных соединений хлористым водородом в присутствии катализатора при повышенной температуре и давлении, отличающийся тем, что, согласно изобретению, температура процесса 100-250oC давление, при котором проводят процесс, больше давления насыщенных паров кремнийорганического полимерного соединения или смеси кремнийорганических полимерных соединений при температуре процесса. Концентрацию хлористого водорода на выходе из реакционной зоны поддерживают не менее 10 об.%. В качестве катализатора используют соединения азота и/или фосфора или смесь соединений азота и/или фосфора, в которых атомы и азота, и фосфора непосредственно связаны только с атомами углерода, также используют комплексные соединения хлористого водорода и указанных выше соединений азота и/или фосфора. Например, используют триэтиламин, тетраэтиламмонийхлорид, три-(н-бутил)амин, тетра-(н-бутил)аммонийбромид, тетраалкиламмонийхлориды, в которых алкильная группа является неразветвленным углеводородом с числом атомов углерода в цепочке от 1 до 4. Катализатор используют в количестве 0,0003-0,05 моль катализатора на 1 моль атомов кремния в перерабатываемых соединениях. В предложенном изобретении в качестве кремнийорганических полимерных соединений или смеси кремнийорганических полимерных соединений, которые обрабатывают хлористым водородом для получения алкилхлормоносиланов, используют вещество или смесь веществ, описываемых следующей формулой: , где чередование звеньев может быть как регулярное, так и не регулярное; x = 0-2; y = 0-3; n1





Формула изобретения
1. Способ получения алкилхлормоносиланов путем обработки кремнийорганического полимерного соединения или смеси кремнийорганических полимерных соединений хлористым водородом в присутствии катализатора при повышенной температуре, отличающийся тем, что процесс ведут при 100 - 200oС и давлении больше давления насыщенных паров кремнийорганического полимера или смеси кремнийорганических полимерных соединений при температуре процесса. 2. Способ по п.1, отличающийся тем, что концентрацию хлористого водорода на выходе из реакционной зоны поддерживают не менее 10 об. 3. Способ по п.1, отличающийся тем, что в качестве катализатора используют третичные амины, или фосфины, или тетраалкиламмонийхлорид. 4. Способ по п.1, отличающийся тем, что в качестве катализатора используют комплексные соединения хлористого водорода и третичных аминов или фосфинов. 5. Способ по п.1, отличающийся тем, что в качестве катализатора используют тетраалкиламмонийхлориды, в которых алкильная группа является неразветвленным углеводородом с числом атомов углерода в цепочке 1 4. 6. Способ по п. 3, отличающийся тем, что в качестве катализатора используют соединения, выбранные из ряда триэтиламин, тетраэтиламмонийхлорид, три-(н-бутил)амин, тетра-(н-бутил)аммоний-бромид. 7. Способ по п.1, отличающийся тем, что катализатор используют в количестве 0,0003 0,05 моль катализатора на 1 моль атомов кремния в перерабатываемых соединениях. 8. Способ по п.1, отличающийся тем, что в качестве смеси кремнийорганических полимерных соединений используют продукты прямого синтеза метилхлорсиланов из металлического кремния и хлористого метила, температура кипения которых больше температуры кипения диметилдихлорсилана. 9. Способ по п.1, отличающийся тем, что в качестве кремнийорганических полимерных соединений или смеси кремнийорганических полимерных соединений используют вещество или смесь веществ общей формулы R-[-RClSi-(CH2)x- n1-[-Cl2Si-(CH2)x-] n2- [-R2Si-(CH2)x-] n3-SiR3-yCly, где x 0 2; y 0 3; n1


(n1 + n2 + y)

R С1 С3 алкил,
где чередование звеньев может быть как регулярное, так и нерегулярное.
РИСУНКИ
Рисунок 1