Дисперсно-упрочненный материал на основе меди для электродов контактной сварки
Дисперсно-упрочненный материал на основе меди предназначен для электродов контактной сварки преимущественно нержавеющих сталей и жаропрочных сплавов. Материал содержит медь и титан. Дополнительно материал содержит углерод. Высокое значения твердости, температуры рекристаллизации, а также повышение ресурса работы электродов из материала обеспечивает сочетание в определенном соотношении входящих в него элементов. 2 ил., 2 табл.
Изобретение относится к сварочному производству, в частности к составам материалов для электродов контактной точечной сварки, преимущественно, для сварки нержавеющих сталей и жаропрочных сплавов.
При контактной сварке нержавеющих сталей и жаропрочных сплавов первостепенное значение для материала электрода имеют его прочностные характеристики и стойкость к разупрочнению при высокой температуре. Известны материалы на основе меди для электродов контактной сварки, предназначенные для сварки нержавеющих сталей и жаропрочных сплавов, например, бронзы, содержащие кобальт, никель, титан, бериллий и другие элементы, обеспечивающие прочностные характеристики материала за счет дисперсионного упрочнения. Эти бронзы обладают высокими прочностью и твердостью при комнатной температуре, однако, имеют низкую стойкость к разупрочнению (температуру рекристаллизации). Например, температура рекристаллизации бронзы БрНБТ (Ni 1,4-1,6 мас.%; Be 0,2-0,4 мас.%; Ti 0,05-0,15 мас.%) не превышает 550oC [1]. Это приводит к ускоренному разрушению контактной поверхности электродов и выходу их из строя, особенно при сварке нержавеющих сталей и жаропрочных сплавов, когда температура в контакте электрод - свариваемый материал достигает 700-800oC [1]. Известны также порошковые материалы, содержащие медь, вольфрам и никель, например, КМК-Б20, КМК-Б21, КМК-Б23 и др. [2]. Указанные материалы обладают высокой температурой рекристаллизации, а также твердостью, прочностью и жаропрочностью. Недостатками таких материалов являются их низкая электропроводность (17-25% от электропроводности меди) и высокая стоимость, обусловленная, в первую очередь, использованием дорогого и дефицитного вольфрама. Наиболее близким к предлагаемому является внутреннеокисленный материал, содержащий медь и титан [3] . Материал относится к дисперсно-упрочненным (ODS-Oxide Dispersion Strengthening) материалам и содержит в качестве упрочняющей фазы оксид титана TiO2, который образуется в процессе окислительного отжига порошка сплава Cu-Ti. Материал имеет высокие значения электропроводности, прочности и жаропрочности, однако обладает недостаточной твердостью (HV не более 1800 МПа), которая весьма важна при сварке нержавеющих сталей и жаропрочных сплавов. Кроме того, скорость коагуляции частиц оксида титана значительно возрастает при достижении их размеров 250-300 . Это снимает эффект упрочнения и способствует быстрому выходу электродов из строя. Другим недостатком материала является высокая его стоимость, обусловленная длительными окислительно-восстановительными отжигами, причем в специальных (например, в водороде) газах. На этих отжигах, в основном, основаны технологии получения внутреннеокисленных материалов. Целью изобретения является создание материала с более высокими значениями твердости и температуры рекристаллизации, а также ресурса работы электродов из него. Заявляемый материал, содержащий медь и титан, дополнительно содержит углерод при следующем соотношении компонентов, мас.%: Титан - 3-5 Углерод - 0,4-0,8 Медь - Остальное Исходной шихтой для получения материала служат порошки указанных веществ, которые совместно обрабатываются в шаровой мельнице, продукт обработки - гранулят компактируется в брикеты, которые затем нагреваются до температуры 890oC и в нагретом состоянии экструдируются в прутки или профили. Отличием заявляемого материала от прототипа является введение углерода, который, как показали исследования, в результате интенсивного механического измельчения исходных порошков и высокоэнергетического воздействия на их частицы, осуществляемого в шаровой мельнице, взаимодействует с титаном, образуя мелкодисперсные частицы карбида титана TiC. Поскольку процесс обработки порошковой шихты в шаровой мельнице производится в атмосфере воздуха, то происходит также окисление меди и титана с образованием частиц CuO, Cu2O и TiO2. При дальнейшем нагреве на воздухе уплотненного в брикеты гранулята, предназначенного для экструзии, равномерно распределенный в материале гранул углерод восстанавливает медь из ее окислов. Побочный продукт взаимодействия углерода с окислами меди -углекислый газ эвакуируется из брикетов через поры в них. Конечная структура материала представляет собой, как показали металлографический, стереологический и рентгенофазовый анализы, медную матрицу, содержащую в себе мелкодисперсные частицы TiC, TiO2 и С. Основными упрочняющими фазами являются карбид титана TiC и оксид титана TiO2, которые, будучи разнородными, в значительно меньшей степени, чем в противопоставляемом материале, склонны к коагуляции и тем самым обеспечивают материалу более высокую твердость и температуру рекристаллизации. Причем карбид титана TiC, как известно, является одним из наиболее термодинамически стабильных и тугоплавких соединений. Остаточный углерод, который содержится в материале в мелкодисперсном виде, также дополнительно упрочняет его, но самое главное - повышает противоадгезионные свойства материла и снижает переходное сопротивление в контакте, что обеспечивает более качественное сварное соединение. Пример. По указанным выше технологиям были изготовлены прутки диаметром 13 мм из материала - прототипа и заявляемого материала, причем содержание упрочняющих частиц (в первом случае - TiO2, а во втором - TiC и TiO2) в обоих материалах было практически одинаковым: в первом - 10,2 об.%, во втором материале - 11,4 об.%. Из прутков изготавливались образцы диаметром 12 мм и длиной 20 мм, которые были подвергнуты отжигу в вакууме при температуре 950oC с различным временем выдержки: 50, 100, 150, 200 и 250 ч. После отжига из образцов изготавливались тонкие фольги и реплики, с которых при помощи электронного микроскопа были сняты фотографии тонкой структуры материалов при увеличении в 65000 раз. Эти фотографии были подвергнуты стереологическому анализу, при этом определение размеров упрочняющих частиц было проведено по методу Э. Шайля - Г. Шварца - С.А. Салтыкова [4]. Данные стереологического анализа приведены в табл.1. Из табл.1 видно, что у внутреннеокисленного материала (прототипа) скорость коагуляции частиц упрочняющей фазы резко возрастает после 150 ч отжига, тогда как у заявляемого материала скорость коагуляции остается практически постоянной во всем исследованном временном диапазоне. Как следствие этого, температура рекристаллизации материала - прототипа составила 670

Формула изобретения
Дисперсно-упрочненный материал на основе меди для электродов контактной сварки преимущественно нержавеющих сталей и жаропрочных сплавов, содержащий медь и титан, отличающийся тем, что он дополнительно содержит углерод при следующем соотношении компонентов, мас. Титан 3 5 Углерод 0,4 0,8 Медь ОстальноеаРИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6QB4A Регистрация лицензионного договора на использование изобретения
Лицензиар(ы): Шалунов Евгений Петрович
Вид лицензии*: НИЛ
Лицензиат(ы): Общество с ограниченной ответственностью "Завод механически легированных материалов "ДИСКОМ"
Договор № РД0027016 зарегистрирован 25.09.2007
Извещение опубликовано: 10.11.2007 БИ: 31/2007
* ИЛ - исключительная лицензия НИЛ - неисключительная лицензия