Секционированная металлокерамическая разрядная трубка
Изобретение относится к области квантовой электроники. Сущность изобретения заключается в следующем. В секционированной металлокерамической разрядной трубке, содержащей катодный и анодный узлы и газоразрядный промежуток, образованный частью секционированной металлокерамической оболочки с расположенными внутри чашеобразными элементами, имеющими отверстия связи, пространственную фиксацию и тепловой контакт с оболочкой и пространственным ограничителем разряда, введен тепловой и диэлектрический разрыв между чашеобразным элементом и его фиктивным продолжением - соединителем. Причем чашеобразные элементы дополнительно имеют надежный тепловой контакт с внутренней поверхностью керамического изолятора секции и надежную пространственную фиксацию. Для упрощения конструкции разрядной трубки - избавления от внешних обводных каналов в длинномерных разрядных трубках организованы дополнительные внутренние обводные каналы, соединяющие анодный и катодный узлы и имеющие гарантированные тепловые контакты с соединителями и гарантированные тепловые зазоры с чашеобразными элементами и ограничителями разряда. 1 з.п. ф-лы, 2 ил.
Изобретение относится к области квантовой электроники, в частности, к ионным лазерам.
Металлокерамические разрядные трубки активные элемент, для ионных лазеров с металлокерамической оболочкой из керамики на основе Al2O3 обладают рядом достоинств и получили широкое распространение. На их базе фирмами Spectra Physics и Coherent выпускаются почти все модели коммерческих ионных лазеров. Металлокерамические разрядные трубки, включающие в себя внешнюю керамическую оболочку сплошную [1 4] или секционированную металлокерамическую [5 6] с внутренними чашеобразными элементами, имеющими пространственный ограничитель разряда, с анодным и катодным узлами, узлами для вывода излучения, состоят из замкнутого объема с газообразным наполнителем. Тепло из зоны разряда выносится охлаждающему потоку жидкости или газа системой чашеобразных элементов из материала с высокой теплопроводностью либо через керамическую оболочку трубки [1 4] либо более сложным путем, используя и внешние радиаторы [5 6] Чашеобразные элементы соединены с керамической оболочкой твердым припоем либо изнутри (для сплошных оболочек), либо по торцам керамических изоляторов (для секционированных). Каждый чашеобразный элемент содержит систему периферийных отверстий связи для компенсации ката- и электрофорезных явлений, влияющих на работу трубки, и цилиндрический пространственный ограничитель разряда с диском из высокотемпературного материала, имеющим центральное отверстие, который скреплен с последним твердым припоем (или иным другим способом, обеспечивающим надежный тепловой контакт) и пространственно ограничивает разряд. Существуют и другие типы ограничителей разряда от протяженных на несколько чашеобразных элементов до протяженного, единого для всех чашеобразных элементов [6] (прототип). Керамические цилиндрические изоляторы, система чашеобразных элементов, включая и пространственные ограничители разряда, с общей осью служат для создания газоразрядного промежутка с основной, центральной зоной дугового разряда, в дальнейшем - разрядного канала. В разрядных трубках со сплошной керамической оболочкой при высоких тепловых нагрузках, характерных для работы ионных лазеров, необходимо выполнять следующие требования можно использовать только тонкостенные оболочки с хорошей теплопроводностью. Для керамики из Al2O3 типа поликор толщина не должна превышать 2 3 мм. Для керамических оболочек из BeO с уникальной теплопроводностью, эта толщина может быть увеличена. Однако переработка сырья из BeO и изготовление из них керамических оболочек сопряжены с вредными факторами и поэтому в последнее время основные фирмы, выпускающие ионные лазеры, быстрыми темпами переходят на тонкостенные конструкции из экологически чистого и распространенного материала керамик на основе Al2O3. Однако изготовление длинномерных вакуумно-плотных и шлифованных изнутри труб само по себе является сложной технической проблемой, а изготовление разрядных трубок с гарантированной надежной фиксацией и тепловым контактом с керамической оболочкой изнутри большого количества чашеобразных элементов, изолированных между собой, еще сильнее усложняет технологию изготовления. В этом случае использование секционированных конструкций с соединителем секций из материала с хорошей теплопроводностью, например меди, алюминия и т. д. упрощает технологию сборки и изготовления и повышает механическую прочность и сохранность, т.к. в этом случае можно использовать и более толстостенные оболочки 4 5 мм, и более технологические виды керамик на основе Al2O3 типа ВК-94-1, ВК-95-1. К тому же изготовление на промежуточном этапе маломерных керамических деталей намного проще и дешевле и их технологический выход по годности выше. Таким образом, каждая из рассмотренных ранее конструкций разрядных трубок имеет свои недостатки и преимущества, часть из которых уже ранее рассматривалась. Одним из существенных недостатков обычных секционированных разрядных трубок [6] является повышенные требования к охлаждающей жидкости, обычно воде. Ее удельная проводимость должна быть не менее 500 кОм/см и она должна химически не взаимодействовать с внешними частями соединителей (и радиаторов). В противном случае соединители (радиаторы), переходные слои и металлизация, с помощью которых соединяются соседние секции, и внешние радиаторы разрушаются и оболочка теряет герметичность. В этом смысле сплошные керамические оболочки идеальны, т. к. они не имеют таких недостатков и могут охлаждаться жидкостями с менее жесткими требованиями. Основной причиной таких разрушений является электролиз вследствие конечной проводимости жидкости и непосредственного контакта элементов конструкции с сильноточной дугой разрядом. Поэтому торцы соединителей, переходные слои и металлизацию, если они проводящие, необходимо надежно изолировать. Во время термических циклов нагрева и охлаждения эти покрытия, обычно тонкие, образуют микротрещины. Охлаждающая жидкость (вода) в конце концов проникает в микротрещины и с временем электролиз может разрушить эти защитные покрытия. Поэтому желательно нарушить электрический контакт соединителей с проводящей плазмой разряда. В этом случае процесс их разрушения будет ничтожно малым. Например, это можно сделать, используя диэлектрический ограничитель разряда и не допуская токовых утечек на чашеобразный элемент, выполненный из токопроводящего материала, обычно из меди или медьсодержащих сплавов. Естественно, здесь предполагается, что во всех разрядных трубках не допускается каскадное горение разряда между чашеобразными элементами и другими проводящими частями конструкции разрядной трубки. Задачей, решаемой настоящим изобретением, является достижение у разрядных трубок с секционированной конструкцией таких же свойств и таких же требований к охлаждающей жидкости, как и у конструкций со сплошной керамической оболочкой при сохранении преимуществ секционированной конструкции. Поставленная цель решается за счет того, что секционированная металлокерамическая разрядная трубка, содержащая оптические узлы для вывода излучения, катодный и анодный узлы и газоразрядный промежуток, образованный частью секционированной металлокерамической оболочки с расположенными внутри чашеобразными элементами, имеющими отверстия связи, пространственную фиксацию и тепловой контакт с оболочкой и пространственным ограничителем разряда, устроена изнутри так, что все чашеобразные элементы (с ограничителями разряда) каждой секции, состоящей дополнительно и из керамического цилиндрического изолятора и теплопроводящего соединителя секций, по которым происходят герметичные, торцевые последовательные соединения керамических цилиндрических изоляторов соседних секций, электрически изолированы от соединителей секций, имеют с ним малое тепловое сопротивление. Стремление создать компактную конструкцию разрядной трубки связано с попытками избавиться от неудобного и хрупкого внешнего обводного канала для обратного потока газа. Для описанных ранее конструкций [1 6] эта цель достигается до длин газоразрядного промежутка 800 1000 мм для аргонового наполнения (для криптонового или криптон-аргонового наполнения эти длины еще меньше), т. к. система отверстий позволяет эффективно справляться с ката- и электрофорезными явлениями. К сожалению, все имеющиеся конструкции ионных лазеров с длинномерными разрядными трубками (секционированными или сплошными оболочками), необходимыми для получения большой мощности (> 15 Вт) при малом сечении пучка, требуют наличия хотя бы одного внешнего обводного канала, т.к. внутренняя организация циркуляции рабочего газа не в состоянии обеспечить из-за ката- и электрофорезных явлений оптимальные условия генерации и съема энергии по всей длине даже в самых совершенных разрядных трубках нового поколения [1 6] К тому же вышеупомянутая неоднородность в концентрации может служить причиной концентрационных неустойчивостей, что обычно приводит к катастрофическому разрушению трубки. В первую очередь, недостаточная пропускная способность по газу обусловлена сильно разогретым нейтральным газом. Известно [7] что газопропускная способность q зависит от температуры T как g
Формула изобретения
1. Секционированная металлокерамическая разрядная трубка, содержащая оптические узлы для вывода излучения, катодный и анодный узлы и газоразрядный промежуток, образованный частью секционированной металлокерамической оболочки с расположенными внутри чашеобразными элементами, имеющими отверстия связи, пространственную фиксацию и тепловой контакт с оболочкой и пространственным ограничителем разряда, отличающаяся тем, что все чашеобразные элементы с ограничителями разряда каждой секции, состоящей дополнительно из керамического цилиндрического изолятора и теплопроводящего соединителя секций, по которым происходят герметичное торцевое последовательное соединение керамических секций, электрически изолированы от соединителя секций и имеют с ним малое тепловое сопротивление. 2. Трубка по п.1, отличающаяся тем, что имеет дополнительные внутренние обводные каналы, соединяющие анодный и катодный узлы, с гарантированным тепловым контактом с любым соединителем и гарантированным тепловым зазором с любым чашеобразным элементом и ограничителем разряда.РИСУНКИ
Рисунок 1, Рисунок 2