Способ определения относительной энергии взрывчатых веществ, переданной грунтовому массиву при взрыве
Использование: изобретение относится к области промышленного применения взрывчатых веществ и может быть использовано при взрывчатых работах на горных предприятиях и в строительстве. Существо: в способе определения относительной энергии взрывчатых веществ, переданной грунтовому массиву при взрыве, включающем бурение скважин или шпуров в грунтовом массиве, размещение в них зарядов сравниваемых BB и эталонного заряда BB, засыпку свободного пространства скважин забоечным материалом с обеспечением полной камуфлетности взрывов и производство взрывов, при проведении взрывов выполняют сейсмические измерения на поверхности массива с определением модуля векторной скорости смещения и периода колебаний массива, а после взрывов для каждого из сравниваемых BB по результатам измерений находят зависимость и затем определяют относительную к показателю эталонного BB энергию сравниваемых BB, переданную массиву, по формуле, приведенной в описании изобретения. 2 табл., 5 ил.
Изобретение относится к области промышленного применения взрывчатых веществ (BB) и может быть использовано при взрывных работах на горных предприятиях и в строительстве, т.к. величина энергии BB, переданной грунтовому массиву при взрыве, определяет взрывное действие BB при их применении.
Известен способ расчетного или лабораторного определения потенциальной энергии BB (Дубнов Л.В. Бахаревич Н.С. Романов А.И. Промышленные взрывчатые вещества. М. Недра, 1988, с.26-44). Недостатком этого способа для оценки взрывного эффекта BB является неучет закономерностей перехода энергии BB во взрываемый грунтовый массив. В связи с этим обязательно проводят полевые испытания BB. Известен также принятый за прототип способ определения относительной энергии взрывчатых веществ, переданной грунтовому массиву при взрыве, включающий бурение скважин или шпуров в грунтовом массиве, размещение в них зарядов сравниваемых ВВ и эталонного заряда ВВ, например, граммонита 79/21 или аммонита 6ЖВ, засыпку свободного пространства скважин забоечным материалом с обеспечением полной камуфлетности взрывов и производство взрывов (Азаркович А. Е. и Тихомиров А. П. Современные промышленные взрывчатые вещества, их оценка и условия рационального применения на карьерах. М. Цветметинформация, 1969, с.87-95). В этом способе в грунтовом массиве бурят скважины или шпуры, в которых размещают камуфлетные заряды сравниваемых BB, среди которых одно (обычно граммонит 79/21 или аммонит 6ЖВ) считают эталонным. Свободное пространство скважин заполняют забойкой и производят взрывы. Затем специальными приборами производят замер объема образовавшихся полостей (котлов) и по значениям объема, приходящихся на 1 кг BB, судят о взрывном эффекте сравниваемых BB. Недостатками этого способа являются трудоемкость замера объема котлов и малость получаемой информации (одно цифровое значение для каждого из полученных котлов). Техническим результатом настоящего изобретения является повышение достоверности результатов сравнительной оценки BB, снижение ее трудоемкости, уменьшение сроков работ за счет увеличения количества и усреднения получаемых при испытаниях данных и отсутствия необходимости в замере объема котлов. Указанный технический результат достигается тем, что в способе определения относительной энергии BB, переданной грунтовому массиву при взрыве, включающем бурение скважин или шпуров в однородном грунтовом массиве, размещение в них зарядов сравниваемых BB, в том числе эталонного, например, граммонита 79/21, засыпку свободного пространства скважин забоечным материалом с обеспечением полной камуфлетности взрывов и производство взрывов, при их проведении выполняют сейсмические измерения на поверхности массива, определяя модуль векторной скорости смещения и период колебаний массива, а после взрывов для каждого из сравниваемых BB по результатам измерений находят зависимость

r расстояние по поверхности массива от эпицентра взрыва до точки сейсмических измерений, м;



где W линия наименьшего сопротивления заряда (см. фиг.1), м;
q расчетный удельный расход BB, кг/м3, принимаемый по таблицам технических руководств (см. Технические правила ведения взрывных работ на дневной поверхности. М. Недра, 1972, с.11). Свободную часть скважин засыпают забоечным материалом 4. При взрывах образуются камуфлетные полости 5. На поверхности массива помещают трехкомпонентные сейсмические станции I-V в количестве не менее 5, расположенные, например, по профильной схеме. Расстояния от точек измерений до эпицентра взрывов 6 должны изменяться от возможно малых до равных не менее





и соответствующие численные значения коэффициента сейсмичности Ki и показателя затухания сейсмических волн с расстоянием


где Ti и T79/21 период колебаний массива соответственно для сравниваемого BB и граммонита 79/21, с; K79/21 коэффициент сейсмичности для граммонита 79/21. Физическое обоснование предлагаемого способа и вывод применяемых расчетных формул базируются на результатах специального аналитико-экспериментального исследования. Известно, что из-за разницы акустической жесткости продуктов взрыва BB и грунтового массива в последний при взрыве переходит не вся энергия BB, а ее часть, определяемая так называемым коэффициентом преломления, который в энергетической форме выражают формулой

где D скорость детонации BB;

Сp скорость распространения продольных упругих волн в массиве;

Э=ЭскKпр,
где Эск энергия BB в скважине. При разработке предлагаемого способа нами в однородном массиве песчаника (












обеспечивает полную камуфлетность взрывов. Свободную часть скважин заполняет забойкой. Трехкомпонентные сейсмические станции в количестве 5 размещают по профильной схеме таким образом, что расстояние от точек измерений до эпицентров взрывов находится в диапазоне r= 7-30 м. Каждый заряд взрывают раздельно. Для увеличения достоверности результатов однотипные взрывы дублируют. Полученные при сейсмических измерениях значения векторной скорости смещения V и периода колебаний массива T приведены в табл.2. На фиг. 5 построены графики зависимости V от параметра

для гранипора БП-3 (точки 1 на фиг.5)

для граммонита 79/21 (точки 2 на фиг.5)

Проверка статистическими методами показала значимость расхождения значений для гранипора Ki1,65 и для граммонита 79/21 K79/211,5. Это позволяет определить значение относительной энергии, передаваемой массиву гранипором БП-3:

т. е. гранипор БП-3 передает в массив энергии на 21% больше, чем граммонит 79/21. Можно отметить, что полученный результат, на первый взгляд, кажется парадоксальным, поскольку удельная потенциальная энергия граммонита 79/21 (4,28 МДж/кг) больше, чем гранипора БП-3 (3,8 МДж/кг). Однако скорость детонации гранипора (Д=5,5





обеспечивает полную камуфлетность взрывов. Заряды взрывают по одному с дублированием однотипных взрывов. Сейсмические станции на поверхности массива располагают аналогично примеру 1. При взрывах производят измерения векторной скорости смещения и периода сейсмических колебаний массива. Обработка данных сейсмических измерений выполнена по той же методике, что в примере 1. В результате определены значения коэффициента сейсмичности для комбинированных зарядов Ki 3,1 и для граммонита 79/21 K79/21= 3,0, а также периоды колебаний массива Ti= 0,029 с и T79/21 0,032 с. По этим данным определяют относительную энергию, передаваемую массиву при взрыве комбинированными зарядами

т. е. по передаваемой массиву при взрыве энергии сравниваемые BB практически равноценны. Этот вывод был подтвержден широкими производственными испытаниями комбинированных зарядов на Жигулевском карьере. Изобретение обеспечивает следующие положительные технические результаты:
повышение достоверности результатов полевой оценки BB;
снижение трудоемкости работ;
уменьшение сроков их проведения.
Формула изобретения

и затем определяют относительную (к показателю для эталонного ВВ) энергию сравниваемых ВВ, переданную массиву, по формуле

где vi модуль векторной скорости смещения массива, м/с;
Ki коэффициент сейсмичности сравниваемого ВВ;
K79/21 то же для граммонита 79/21;
Ti период колебаний массива при взрыве сравниваемого ВВ, с;
T79/21 тоже для граммонита 79/21;
Q масса заряда ВВ, кг;
r расстояние по поверхности массива от эпицентра взрыва до точки сейсмических измерений, м;

РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6