Твердый компонент катализатора для (со)полимеризации этилена и олефинов, катализатор этого процесса и процесс (со)полимеризации этилена и олефинов
Твердый компонент катализатора процесса (со)полимеризации этилена, содержащий магний, галоген и титан, получен /I/ растворением в инертном органическом растворителе диалкилмагния, галогенида/кремния и иногда также алкилгалогенида и с последующим выпадением осадка гранулированного твердого продукта; /II/ контактом полученного гранулированного твердого продукта и его реакцией с галогенидом титана, алкоксидом или галогеналкоксидом титана с получением твердого компонента катализатора; и /III/ активацией твердого компонента катализатора путем контакта его с галогенидом алкилалюминия - в том случае, когда на стадии /II/ использовался алкоксид или галогеналкоксид титана. 3 с. и 15 з.п. ф-лы, 2 табл.
Изобретение относится к твердому компоненту катализатора, который в сочетании с алкилметаллами или галогенидами алкилметаллов обеспечивает каталитическую систему, подходящую для гомополимеризации этилена или сополимеризации этилена с альфа-олефинами, такими как пропилен, бутен-1, гексен-1, 4-метилпентен-1, октен-1 и другими аналогичными продуктами.
В настоящее время уже известно применение каталитических систем типа Циглера-Натта для полимеризации альфа-олефинов, и они представляют собой, как правило, сочетание металлоорганического соединения элементов I-III групп периодической системы и соединения переходного металла, принадлежащего к IV-VI группам периодической системы (Boor Jr. Ziegler-Latta Catalysts and Polymerization, Academic New York, 1979). Как правило, металлоорганическое соединение представляет собой алкилалюминий, а соединение переходного металла галогенид титана. Известно также, что существует возможность связывания или нанесения галогенида титана на твердый, гранулированный носитель (Karol F.J. Catal. Rev.-Sci. Eng. 26 384, 557-595, 1984). Известно также активирование хлорида магния и его применение при получении катализаторов на основе высоко активных солей титана, используемых в процессах полимеризации олефинов (Germany 2,153.520 (CA 77, 62505, 1972); Germany 2.638,429 /CA 83, 59870, 1972/; Germany 2.638.429 /CA 86, 140706, 1975/; Belgium 848.427/ CA 87, 68839, 1977/ и Japan 79.118.484 /CA 92, 59450, 1979). Известно также, наконец, что морфология гетерогенных катализаторов полимеризации альфа-олефинов может воспроизводиться в морфологии эквивалентных полимеров; это возможно при соответствующих технологических условиях синтеза катализатора, которые могут оказаться одновременно и сложными и трудоемкими (Karol F. J. см. выше и McDaniel M.P. J. Polym. Chem. Ed. 19, 1967-1976, 1981). На рынке полиолефинов имеется потребность во все возрастающем количестве продуктов, удовлетворяющих самым различным требованиям в разнообразных областях применения, но, с другой стороны, есть необходимость в упрощении процесса производства полиолефинов, что позволило бы снизить капиталовложения и стоимость производства. Ощущается, в частности, потребность в катализаторах не только простых и экономичных, но позволяющих также производство, по возможности за одну стадию полимеризации, олефиновых гомополимеров за одну стадию полимеризации, олефиновых гомополимеров и сополимеров, пригодных и для последующей экструзии, и для формования. Eaborn C. E. Organo Silicon Compounds, Butterworths Scientific Publications, London 1960; Rochow E.G. The Chemistry of Silicon, New York, 1975 и Voorhoeve R. J.H. Orgayjsilanes, Elsevier, New York, 1967 описывают реакцию алкилирования между диалкилмагнием (MgR2) или галогенидом алкилмагния (MgRX) и тетрахлоридом кремния (SiCl)4, в результате которой получается твердое некристаллическое соединение и которая протекает согласно уравнению: SiCl4+ MgPX (или MgR2)_




(MFR отношение индексов расплава ОИР, определяется как отношение MFI (21,6 кг) / MFI (2,16 кг). Полиэтилен также получается в виде гранул со следующим распределением по размерам, в

>2000 0,03 мас. 2000< >1000 0,5 мас. 1000< >500 62,7 мас. 500< >125 35,7 мас. <125 1,1 мас. Пример 2. Эксперимент проводился в соответствии с описанием Примера 1, с той разницей, что было использовано 20,2 мл (29,66 г, 175 ммоль) тетрахлорида кремния. Получено 17 г твердого компонента катализатора в виде гранул, содержащих 1,4 мас. титана (42% в трехвалентной форме), 22,6 мас. магния и 62,5 мас. хлора. Полученный описанным выше способом твердый компонент катализатора использовали для испытаний на полимеризацию этилена, которые проводились как описано в Примере 1. Выход полиэтилена составил 6,2 кг на грамм твердого компонента катализатора, полученный полиэтилен обладал следующими характеристиками:
Плотность: 0,9531 г/мл
MFI ИР (2,16 кг): 0,08 г/10'
Кажущаяся плотность: 0,29 г/мл
MFR ОИР 47,6
Распределение по размерам (

>2000 0,1 мас. 2000< >1000 15,3 мас. 1000< >500 55,2 мас. 500< >125 28,9 мас. <125 0,5 мас. Пример 3. В колбу емкостью 250 мл, снабженную обратным холодильником, механической мешалкой и термометром, загрузили в атмосфере азота 100 мл н-гептана, 48 мл 20 мас.-ного раствора бутилоктилмагния (Mg1But1,5Oct0,5; 7,0 г, 42 ммоль) и 17 мл тетрахлорида кремния (25 г, 147 ммоль) в н-гептане. Содержимое колбы нагревали в течение 1 ч до 90oC. Образовавшийся твердый осадок в виде гранул размером от 1 до 50

Плотность 0,9581 г/мл
ИР (2,16 кг) 0,48 г/10'
Кажущаяся плотность: 0,27 г/мл
ОИР 30,9
Распределение по размерам (мм):
>2000 0,4 мас. 2000< >1000 15,1 мас. 1000< >500 74,6 мас. 500< >125 9,1 мас. <125 0,8 мас. Пример 4. Методика эксперимента соответствовала описанной в примере 3, с той разницей, что вместе с тетрахлоридом кремния добавили 6 мл (5,32 г, 67,8 ммоль) бутилхлорида. Получили твердый компонент катализатора, содержащий 2,6 мас. титана, 20,0 мас. магния, 58,1 мас. хлора, 8,0 мас. бутанола и 1,3 мас. алюминия. Испытания на полимеризацию этилена проводили по методике, описанной в Примере 1, используюя 50 мг твердого компонента катализатора и 6 ммоль триэтилалюминия в качестве сокатализатора. Выход полиэтилена составил 13,1 кг на грамм твердого компонента катализатора; получен полиэтилен со следующими характеристиками:
Плотность 0,9574 г/мл
ИР (2,16 кг) 0,38 г/10'
Кажущаяся плотность 0,28 г/мл
ОИР 11,8
Распределение по размерам (мм):
<2000 8,7 мас. 2000< >1000 64,7 мас. 1000< >500 22,6 мас. 500< >125 3,1 мас. <125 0,9 мас. Пример 5. В колбу емкостью 250 мл, снабженную обратным холодильником, механической мешалкой и термометром, загрузили в атмосфере азота, 100 мл н-гептана, 10,2 мл 20 мас.-ного раствора бутилоктилмагния (Mg1But1,5Oct0,5; 1,49 г, 8,9 ммоль), 6,8 мл тетрахлорида кремния (9,98 г, 58,8 ммоль) и 4,6 мл (4,08 г, 44,0 ммоль) бутилхлорида в н-гептане. Содержимое колбы нагревали в течение 2 ч до температуры 90oC. Снова добавили 6,8 мл (9,98 г, 58,8 ммоль) тетрахлорида кремния и 4,6 мл (4,08 г, 44,0 ммоль) бутилхлорида, после чего выдерживали смесь в течение 2 ч при температуре 90oC. Отделили фильтрацией образовавшийся твердый осадок в виде гранул размером от 1 до 50

Плотность 0,9591 г/мл
ИР (2,16 кг) 1,7 г/10'
Кажущаяся плотность 0,30 г/мл
ОИР 25,6
Распределение по размерам (

>2000 5,4 мас. 2000< >1000 15,0 мас. 1000< >500 46,6 мас. 500< >125 26,4 мас. <125 6,6 мас. Пример 6. В колбу емкостью 500 мл, снабженную обратным холодильником, механической мешалкой и термометром, загрузили в атмосфере азота 114 мл 20 мас. -ного раствора бутилоктилмагния (Mg1But1,5Oct0,5) и 8,0 г (25,0 ммоль) тетрахлорида гафния в н-гептане. Содержимое колбы нагревали в течение 15 мин до 40oC, добавили 100 мл (147 г, 864 ммоль) тетрахлорида кремния и нагревали смесь в течение 1 ч до 77oC. Отделили фильтрованием образовавшийся твердый осадок в виде гранул размером от 1 до 50

Плотность 0,9565 г/мл
ИР (2,16 кг) 0,14 г/10'
Кажущаяся плотность 0,28 г/мл
ОИР 76,4
Распределение по размерам (мм):
>2000 0,0 мас. 2000< >1000 1,0 мас. 1000< >500 47,7 мас. 500< >125 50,5 мас. <125 0,8 мас. Пример 7. Твердый компонент катализатора, полученный согласно методике, описанной в Примере 6, использовали для проведения дальнейших испытаний на полимеризацию этилена: в автоклаве, в котором содержалось 2 л н-гексана, с использованием 5 мг твердого компонента катализатора и 5 ммоль триизобутилалюминия в качестве сокатализатора, при общем давлении 15 бар (отношение давления водорода к давлению этилена 0,94/1), при температуре 80oC, в течение 4 ч. Достигнут выход полиэтилена 12,1 кг на грамм твердого компонента катализатора, полученный полиэтилен обладал следующими характеристиками:
Плотность 0,9562 г/мл
ИР (2,16 кг) 0,09 г/10'
ОИР 83
Распределение по размерам (мм):
>2000 0,1 мас. 2000< >1000 1,2 мас. 1000< >500 60,7 мас. 500< >125 37,6 мас. <125 0,4 мас. Пример 8. Твердый компонент катализатора, полученный по методике, описанной в Примере 6, использовали для проведения дальнейших испытаний на полимеризацию этилена: в 5-литровом автоклаве, в котором содержалось 2 л н-гексана, с использованием 50 мг твердого компонента катализатора и 4 ммоль тригексилалюминия в качестве сокатализатора, при общем давлении 15 бар (соотношение между давлениями водорода и этилена 1,17/1), при температуре 85oC, в течение 2 ч. Выход полиэтилена составил 9,0 кг на грамм твердого компонента катализатора, полученный полиэтилен обладал следующими характеристиками:
Плотность 0,9579 г/мл
ИР (2,16 кг) 0,33 г/10'
Кажущаяся плотность 0,26 г/мл
ОИР 87,5
Распределение по размерам (

>2000 0,1 мас. 2000< >1000 0,8 мас. 1000< >500 53,9 мас. 500< >125 44,7 мас. <125 0,5 мас. Пример 9. Твердый компонент катализатора, полученный в соответствии с описанной в Примере 6 методикой, использовали для дополнительных испытаний на полимеризацию этилена, проводимых в следующих условиях: в автоклаве емкостью 5 л, в котором содержалось 2 л н-гексана, с использованием 50 мг твердого компонента катализатора и 4 ммоль тригексилалюминия как сокатализатора, при общем рабочем давлении 15 бар (соотношение величин давлений водорода и этилена 1/1), при температуре 85oC, в течение 2 ч. Полиэтилен получен с выходом 10,5 кг полиэтилена на грамм твердого компонента катализатора со следующими характеристиками:
Плотность 0,956 г/мл
ИР (2,16 кг) 0,21 г/10'
Кажущаяся плотность 0,2 г/мл
ОИР 102
Распределение по размерам (

>2000 0,1 мас. 2000< >1000 0,9 мас. 1000< >500 54,2 мас. 500< >125 44,3 мас. <125 0,5 мас. Пример 10. Твердый компонент катализатора, полученный согласно методике Примера 6, использовали для дополнительных испытаний на полимеризацию этилена, проводимых в следующих условиях: в 5-литровой автоклаве, в котором помещалось 2 л н-гексана, с использованием 50 мг компонента катализатора и 5 ммоль триизобутилалюминия как сокатализатора, при общем рабочем давлении 15 бар (соотношение между давлением водорода и этилена 1,8/1), при температуре 75oC, в течение 4 ч. Выход полиэтилена составил 9,0 кг на грамм твердого компонента катализатора, полученный полиэтилен обладал следующими характеристиками:
Плотность 0,9581 г/мл
ИР (2,16 кг) 0,11 г/10'
Кажущаяся плотность 0,29 г/мл
ОИР 117
Распределение по размерам (

>2000 0,1 мас. 2000< >1000 1,2 мас. 1000< >500 55,2 масс. 500< >125 42,9 мас. <125 0,6 мас. Пример 11. Твердый компонент катализатора получили по описанной в Примере 6 методике, с той разницей, что использовали 4,0 г (12,5 ммоль) тетрахлорида гафний и 1,4 мл (2,42 г, 12,8 ммоль) тетрахлорида титана. Таким образом получили 15,5 г твердого компонента катализатора, содержащего, помимо гафния, 3,6 мас. титана (88% в виде трехвалентного титана), 14,6 мас. магния и 56,9 мас. хлора. Твердый компонент катализатора, полученный вышеописанным способом, использовали для испытаний на сополимеризацию этилена. Более конкретно: сополимеризацию проводили в 5-литровом автоклаве, в котором находилось 2 л н-гексана и 10 г бутена-1, используемого в качестве сомономера, использовали для испытаний 60 мг твердого компонента катализатора и 4 ммоль триизобутилалюминия как сокатализатора, при общем давлении 15 бар (соотношение давления водорода и давления этилена 1,35/1), при температуре 85oC, в течение 1,5 ч. Выход сополимера этилен-бутен-1 на грамм твердого компонента катализатора составил 8,3 кг; полученный сополимер обладал следующими характеристиками:
Плотность 0,9494 г/мл
ИР (2,16 кг) 0,24 г/10'
Кажущаяся плотность 0,28 г/мл
ОИР: 73,3
Распределение по размерам (

>2000 0,0 мас. 2000< >1000 0,1 мас. 1000< >500 17,2 мас. 500< >125 77,9 мас. <125 4,8 мас. Пример 12. Твердый компонент катализатора, полученный в соответствии с методикой, описанной в Примере 11, использовали далее в испытаниях на сополимеризацию этилена, которые проводились в 5-литровом автоклаве, содержащем 2 л н-гексана и 10 г бутена-1, используемого в качестве сомономера, для испытаний брали 30 мг твердого компонента катализатора и 4 ммоль триизобутилалюминия в качестве сокатализатора, при общем давлении 15 бар (соотношение между давлением водорода и этилена 1,54/1), при температуре 85oC, в течение 4 ч. Выход сополимера этилен-пропилен составил 6,2 кг на грамм твердого компонента катализатора, был получен сополимер со следующими характеристиками:
Плотность 0,9525 г/мл
ИР (2,16 кг) 1,32/10'
Кажущаяся плотность 0,275 г/мл
ОИР 50,2
Распределение по размерам (

>2000 0,0 мас. 2000< >1000 0,1 мас. 1000< >500 12,9 мас. 500< >125 83,7 мас. <125 2,3 мас. Пример 13. Получили твердый компонент катализатора в соответствии с методикой, описанной в Примере 6, но с той разницей, что использовали 4,0 г (12,5 ммоль) тетрахлорида гафния. Получили 16 г твердого компонента катализатора, содержащего, помимо гафния, 4,7 мас. титана (74,5% в виде трехвалентного титана), 13,7 мас. магния и 56,9 мас. хлора. Полученный вышеописанным способом твердый компонент катализатора использовали для испытаний на полимеризацию этилена. Более конкретно, полимеризацию проводили в 5-литровом автоклаве, в котором находилось 2 л н-гексана, использовали 50 мг твердого компонента катализатора и 5 ммоль триизобутилалюминия в качестве сокатализатора, при общем давлении 15 бар (соотношение между давлением водорода и этилена 1,26/1), при температуре 85oC, в течение 1,5 ч. Выход полиэтилена составил 7,4 кг на грамм твердого компонента катализатора, получен полиэтилен со следующими характеристиками:
Потность 0,9581 г/мл
ИР (2,16 кг) 0,27 г/10'
Кажущаяся плотность 0,26 г/мл
ОИР: 62,2
Распределение по размерам ((

>2000 0,1 мас. 2000< >1000 1,7 мас. 1000< >500 57,5 мас. 500< >125 40,0 мас. <125 0,7 мас. Пример 14. Приготовили твердый компонент катализатора по описанной в Примере 6 методике, но с той разницей, что было использовано 16,0 г (50 ммоль) тетрахлорида гафния. Получили 27 г твердого компонента катализатора, в котором содержалось, кроме гафния, 3,9 мас. титана (93,5 в виде трехвалентного титана), 7,8 мас. магния и 50,9 мас. хлора. Полученный вышеописанным способом твердый компонент катализатора использовали для проведения испытаний на полимеризацию этилена. Полимеризацию проводили в 5-литровом автоклаве, в котором находилось 2 л н-гексана, использовали для испытаний 50 мг твердого компонента катализатора и 4 ммоль триизобутилалюминия в качестве сокатализатора, при общем давлении 15 бар (соотношение между давлением водорода и этилена 1,11/1), при температуре 85oC, в течение 1,5 ч. Выход полиэтилена составил 2,7 кг на грамм твердого компонента катализатора, получен полиэтилен со следующими характеристиками:
Плотность 0,9570 г/мл
ИР (2,16 кг: 0,10 г/10'
Кажущаяся плотность 0,29 г/мл
ОИР 81
Распределение по размерам (

>2000 0,0 мас. 2000< >1000 0,3 мас. 1000< >500 2,3 мас. 500< >125 82,3 мас. <125 15,1 мас. Пример 15. По методике, описанной в Примере 6, получили твердый компонент катализатора, но с той разницей, что вместо тетрахлорида гафния использовали тетрахлорид циркония (5,8 г, 25 ммоль). Получили 19 г твердого компонента катализатора, в котором содержалось, кроме циркония, 4,9 мас. титана (93,0 мас. в виде трехвалентного титана), 11,5 мас. магния и 66,4 мас. хлора. Твердый компонент катализатора, полученный вышеописанным способом, использовали для испытаний на полимеризацию этилена. Более конкретно: полимеризацию проводили в 5-литровом автоклаве, в котором находилось 2 л н-гексана, использовали для испытаний 50 мг твердого компонента катализатора и в качестве сокатализатора 4 ммоль триизобутилалюминия, работали при общем давлении 15 бар (соотношение между давлением водорода и этилена 1,10/1), при температуре 85oC, в течение 1,5 ч. Выход полиэтилена составил 8,4 кг на грамм твердого компонента катализатора, получили полиэтилен со следующими характеристиками:
Плотность 0,9571 г/мл
ИР (2,16 кг) 0,8 г/10'
Кажущаяся плотность 0,29 г/мл
ОИР 52,4
Распределение по размерам (

>2000 0,0 мас. 2000< >1000 1,5 мас. 1000< >500 45,4 мас. 500< >125 52,4 мас. <125 0,7 мас. Пример 16. Твердый компонент катализатора получили по методике Примера 6, но вместо тетрахлорида гафния использовали 3,93 г (25 ммоль) трихлорида ванадия. Получили 23,6 г твердого компонента катализатора, в котором содержалось 2,8 мас. титана, 5,8 мас. ванадия, 11,1 мас. магния и 47,1 мас. хлора. Полученный выше твердый компонент катализатора использовали для испытаний на полимеризацию полиэтилена. Более конкретно: полимеризацию проводили в 5-литровом автоклаве, в котором находилось 2 л н-гексана, для испытаний использовали 50 мг твердого компонента катализатора и в качестве сокатализатор 5 ммоль триизобутилалюминия, при общем давлении 15 бар (соотношение давления водорода и этилена 1,46/1), при температуре 85oC, в течение 2 ч. Выход полиэтилена составил 6,2 кг на грамм твердого компонента катализатора, получен полиэтилен со следующими характеристиками:
Плотность 0,9635 г/мл
ИР (2,16 кг): 2,82 г/10'
Кажущаяся плотность 0,28 г/мл
ОИР 39,2
Распределение по размерам (мм):
>2000 1,3 мас. 2000< >1000 8,2 мас. 1000< >500 80,6 мас. 500< >125 9,4 мас. <125 0,5 мас. Пример 17. В колбу емкостью 500 мл, снабженную обратным холодильником, механической мешалкой и термометром, загрузили в атмосфере азота 114 мл 20 мас.-ного раствора бутилоктилмагния (Mg1But1,5Oct0,5), 6,0 г смеси трихлорида ванадия и тетрахлорида гафния (при атомном соотношении V/Hf=1-1) в н-гептане. Смесь хлоридов предварительно размалывали в течение 4 ч в атмосфере аргона. Полученную суспензию нагревали при 40oC в течение 15 мин, а затем добавили 100 мл (147 г, 864 ммоль) тетрахлорида кремния. Содержимое колбы нагревали в течение 1 ч до 77oC. Отделили твердый гранулированный осадок фильтрованием и тщательно промыли его н-гексаном. Из промытого твердого осадка приготовили суспензию в 150 мл н-гексана и добавили к суспензии 2,8 М мл (4,84 г, 25,5 ммоль) тетрахлорида титана. Смесь выдерживали в течение 1 ч при 90oC, затем высушивали суспензию, выпаривая растворитель при атмосферном давлении. Таким образом получили 21 г твердого компонента катализатора, в котором содержалось 3,0 мас. титана, 3,1 мас. ванадия, 12,5 мас. магния и 52,5 мас. хлора. Твердый компонент катализатора, полученный вышеописанным способом, использовали для испытаний на полимеризацию этилена. Более конкретно: полимеризацию проводили в 5-литровом автоклаве, в котором помещалось 2 л н-гексана, для испытаний использовали 50 мг твердого компонента катализатора и 5 ммоль тригексилалюминия в качестве сокатализатора, процесс протекал при общем давлении 15 бар (соотношение давления водорода и этилена 1,35/1), при температуре 75oC, в течение 4 ч. Получили выход полиэтилена, равный 8,4 кг полиэтилена на грамм твердого компонента катализатора, причем полиэтилен обладал следующими характеристиками:
Плотность 0,9540 г/мл
ИР (2,16 кг) 0,045 г/10'
Кажущаяся плотность 0,28 г/мл
ОИР: 183
Распределение по размерам (

>2000 0,1 мас. 2000< >1000 1,2 мас. 1000< >500 57,7 мас. 500< >125 40,6 мас. <125 0,4 мас. Пример 18. Твердый компонент катализатора, полученный согласно методике Примера 6, использовали в реакторе для полимеризации в псевдоожиженном слое. Реактор представляет собой стальную трубу длиной 80 см и диаметром 5 см, на дне которой помещен пористый металлический диск, позволяющий газу пробулькивать вверх, через насадку. Приготовили суспензию из 5 г твердого компонента катализатора в 100 мл изобутана и загрузили 1 мл этой суспензии в реактор. Приготовили также раствор 50 ммоль триизобутилалюминия в 100 мл изобутана, и ввели 10 мл в реактор. С помощью калиброванного ротаметра в реакторе распределили смесь этилена и водорода состава 1:1. Автоматический клапан сброса давления выделяет часть непрореагировавшей смеси, которая покидает реактор так, чтобы в системе поддерживалось давление постоянно на уровне 20 бар. Рециркуляция смеси в реакторе осуществлялась с помощью компрессора, и она смешивалась с загрузкой свежих реагентов. Скорость рециркуляции регулировали с помощью вентиля контроля потока, что позволяло получить адекватную степень псевдоожижения и смешения. Температуру в реакторе устанавливали, пропуская рециркулирующий и свежий потоки и через холодильник, и через нагреватель, так чтобы установить определенную температуру на входе реактора. Раствор сокатализатора прокачивали с помощью калиброванного насоса через змеевик, помещенный в нагреваемой бане, что позволяет полностью испарить раствор. Поток пара затем вводится в рециркулирующую этилен-водородную смесь. В начале испытания в суспензию ввели 1 мл твердого компонента катализатора и пустили поток этилен-водородной смеси. После установления в системе стационарного состояния подали сокатализатор, и начался процесс полимеризации. Продолжительность испытания составила 1,5 ч, температура полимеризации 75oC. Выход полимера оказался 10,5 кг на грамм твердого компонента катализатора, получен полиэтилен со следующими характеристиками:
Плотность 0,9525 г/мл
ИР (2,16 кг) 0,21 г/10'
Кажущаяся плотность 0,38 г/мл
ОИР 107
Распределение по размерам (

>2000 0,0 мас. 2000< >1000 10,1 мас. 1000< >500 54,9 мас. 500< >125 35,0 мас. <125 0,0 мас. Пример 19. 114 мл 20 мас.5-ного раствора бутилоктила магния (Mg1Bu1,5Oct0,5) и 8,0 г (25,0 ммоль) тетрахлорида гафния в n-гептане загрузили в атмосфере азота в 500 мл колбу, оборудованную обратным холодильником, механической мешалкой и термометром. Содержимое колбы нагревали в течение 15 мин до 40oC, добавляли 100 мл (147 г, 864 ммоль) тетрахлорида кремния, и смесь нагревали в течение 1 ч до 77oC. Твердый осадок в гранулах от 1 до 50 мкм отделяли фильтрованием и тщательно промывали n-гептаном. Промытый твердый продукт суспендировали в 300 мл n-гептана и добавляли 2,55 г (7,5 ммоль) тетра-n-бутилата титана в суспензию. Контакт выдерживали в течение 1 ч при 90oC, и затем суспензию высушивали выпариванием растворителя при атмосферном давлении. Получили около 20 г твердого компонента катализатора в гранулах, чье распределение размеров сходно с распределением размеров твердого осадка. Гранулированный компонент катализатора, полученный подобным образом, суспендировали в 300 мл n-гексана, и в результирующую суспензию добавили 1,9 г (15 ммоль) дихлорида этилалюминия. Смесь оставляли взаимодействовать в течение 1 ч при 80oC. Твердый продукт затем отделяли, промывали n-гексаном до тех пор, пока хлорид ион переставал быть обнаруженным в промывочной жидкости, и высушивали. Получили твердый компонент катализатора, содержащий, в добавление к гафнию, 1,45 мас. титана (90% в трехвалентной форме), 12,5 мас. магния и 64,3 мас. хлора. Твердый компонент катализатора, полученный вышеуказанным способом, используется в испытании по полимеризации этилена. Более определенно, полимеризация проводится в 5-литровом автоклаве, содержащем 2 л n-гексана, при использовании 100 мг твердого компонента катализатора и 3 ммоль триизобутилалюминия как сокатализатора, при суммарном давлении 15 бар (соотношение между давлением водорода и давлением этилена равно 1,2/1), при температуре 85oC и в течение 1,5 ч. Получили выход, равный 2,5 кг полиэтилена на грамм твердого компонента катализатора, и полиэтилен имеет следующие характеристики:
Плотность 0,9560 г/мл
MFI (2,16 кг) 0,25 г/10'
Кажущаяся плотность 0,31 г/мл
MFP 65
Распределение размеров (мкм):
>2000 0,0 мас. 2000< >1000 2,0 мас. 1000< >500 56,5 мас. 500< >125 40,5 мас. <125 1,0 мас. В табл.1 и 2 приведены характеристические отношения между соединениями, используемыми для каждого примера.
Формула изобретения
AlClxEt3-x,
где x 1,5 2,0. 2. Компонент по п.1, отличающийся тем, что на стадии 1 растворитель выбран из углеводородов, предпочтительно из алифатических углеводородов. 3. Компонент по п.1, отличающийся тем, что раствор на стадии 1 выдержан при 40 100oС в течение приблизительно 0,5 5,0 ч. 4. Компонент по п.1, отличающийся тем, что он получен (1) растворением бутилоктилмагния, тетрахлорида кремния и дополнительно алкилхлорида, выбранного из группы бутил-, гексил-, октил- и циклогексилхлорида, при молярном соотношении алкилхлорида и тетрахлорида кремния не более 0,75 1. 5. Компонент по пп.1 и 4, отличающийся тем, что на стадии 1 атомное соотношение кремния и магния составляет 1 9 1 при молярном соотношении бутилхлорида и тетрахлорида кремния 0,75 1, а раствор нагревают до 70 - 95oС в течение 1 2 ч. 6. Компонент по п.1, отличающийся тем, что на стадии 1 твердый осадок отделяют от жидкости и тщательно промывают инертным жидким растворителем, предпочтительно углеводородом. 7. Компонент по п.1, отличающийся тем, что на стадии 2 гранулированный твердый продукт суспендируют в инертном органическом растворителе при 50 - 100oС в течение 0,5 5,0 ч. 8. Компонент по п.1, отличающийся тем, что на стадии 2 атомное соотношение магния и титана составляет 4 20 1, рабочая температура 60 - 90oС, продолжительность процесса приблизительно 1 2 ч. 9. Компонент по п.1, отличающийся тем, что компонент, полученный в конце стадии 2, выделен из суспензии путем выпаривания органического растворителя при атмосферном или пониженном давлении. 10. Компонент по п.1, отличающийся тем, что неактивированный компонент взят в виде суспензии в инертном органическом растворителе при соотношении атомов хлора в этилхлориде алюминия и числа бутоксигрупп в тетра-н-бутилате титана 0,2 1,01,0 при 25 80oС и продолжительности 14 60 мин. 11. Компонент по п.1, отличающийся тем, что в конце стадии 3 указанный компонент выделяют из суспензии путем фильтрования, промывают углеводородным растворителем и высушивают. 12. Компонент по п.1, дополнительно содержащий по крайней мере один металл М, выбранный из ванадия, циркония и гафния, отличающийся тем, что по крайней мере один галогенид металла, выбранный из ванадия, циркония и гафния, добавлен к раствору стадии 1. 13. Компонент по п.11, отличающийся тем, что на стадии 1 атомное соотношение магния в диалкилмагнии и общего содержания титана и металла или металлов М составляет 4,1 30,0 1 при атомном соотношении титана и металла или металлов 0,49 1,96 1. 14. Компонент по п.12, отличающийся тем, что на стадии 2 атомное соотношение магния и общего содержания титана и металла или металлов М составляет 4,1 9 1 при атомном соотношении титана и металла или металлов 0,49 0,98 1. 15. Катализатор (со)полимеризации этилена и олефинов, имеющих 3 15 углеродных атомов, содержащий твердый компонент, включающий магний, хлор, титан и алюминийорганическое соединение, выбранное из группы, включающей триалкилалюминий, хлоридалкилалюминий, содержащий 1 6 атомов углерода в алкильной группе, отличающийся тем, что твердый компонент представляет собой продукт, полученный в результате проведения последовательных стадий растворения (1) диалкилмагния, выбранного из группы, состоящей из диэтил-, этилбутил-, бутилоктил- и диоктилмагния, и тетрахлорида кремния при атомном соотношении кремния и магния 1 10 1, выдерживанием смеси до осаждения из раствора твердого гранулированного осадка, взаимодействие (2) полученного осадка с тетрахлоридом или тетра-н-бутилатом титана при атомном соотношении магния и титана 4,1 55,0 1 с последующим активированием (3) твердого компонента путем его контакта с этилхлоридом алюминия общей формулы AlClxEt3-x, где x 1,5 2,0, при атомном соотношении алюминия в алюминийорганическом соединении и титана в твердом компоненте 50 200 1. 16. Катализатор по п.15, отличающийся тем, что твердый компонент представляет собой продукт, полученный в результате проведения стадии растворения (1) в присутствии алкилхлорида, выбранного из группы, состоящей из бутил-, гексил-, октил- и циклогексилхлорида, при молярном соотношении алкилхлорида и тетрахлорида кремния не более 0,75 1. 17. Процесс (со)полимеризации этилена и олефинов, имеющих 3 15 углеродных атомов, проводимый в инертном разбавителе при суспензионной полимеризации или в псевдоожиженном или перемешиваемом слое при газофазной полимеризации при 50 100oС, 5 40 бар при соотношении парциального давления водорода к парциальному давлениюэтилена 0 10 в присутствии катализатора, содержащего алюминийорганическое соединение, выбранное из группы, включающей триалкилалюминий, хлоридалкилалюминий, содержащий 1 6 атомов углерода в алкильной группе, и твердый компонент, содержащий магний, хлор, титан, отличающийся тем, что используют катализатор, содержащий твердый компонент, полученный в результате проведения последовательных стадий растворения (1) диалкилмагния, выбранного из группы, состоящей из диэтил-, этилбутил-, бутилокси- и диоктилмагния, и тетрахлорида кремния при атомном соотношении кремния и магния 1 10 1 с выдерживанием смеси до осаждения из раствора твердого гранулированного осадка, взаимодействия (2) полученного осадка с тетрахлоридом или тетра-н-бутилатом титана при атомном соотношении магниям и титана 4,1 55,0 1 с последующим активированием (3) твердого компонента путем его контакта с этилхлоридом алюминия общей формулы AlClxEt3-x, где x 1,5 2,0, при атомном соотношении алюминия в алюминийорганическом соединении и титана в твердом компоненте 50 200 1. 18. Процесс по п.17, отличающийся тем, что используют катализатор, содержащий твердый компонент, полученный в результате проведения стадии растворения 1 в присутствии алкилхлорида, выбранного из группы, состоящей из бутил-, гексил-, октил- и циклогексилхлорида, при молярном соотношении алкилхлорида и тетрахлорида кремния не более 0,75 1.
РИСУНКИ
Рисунок 1MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 11.10.1997
Номер и год публикации бюллетеня: 19-2001
Извещение опубликовано: 10.07.2001