Способ радиолокационного обнаружения и сопровождения объектов
Изобретение относится к области радиолокации и может быть использовано в перспективных РЛС для управления воздушным движением и для контроля воздушного пространства. В основу изобретения положена задача сокращения затрат энергии коротковолновой РЛС на сопровождение объекта. Эта задача решается путем увеличения точности измерения угловой координаты объекта при приеме сигнала РЛС с одиночного направления. Указанный результат достигается тем, что в известном способе радиолокационного обнаружения и сопровождения объектов, заключающемся в обзоре пространства длинноволновой РЛС и передаче информации о координатах объектов коротковолновой РСЛ, согласно изобретению точные координаты определяют на основе совместного измерения дальностей до объектов разнесенными в пространстве коротковолновой и длинноволновой РЛС. 4 ил.
Изобретение относится к области радиолокации и может быть использовано в перспективных РЛС для управления воздушным движением и для контроля воздушного пространства.
Необходимым условием обеспечения этого управления и контроля является знание координат всех объектов, находящихся в контролируемом пространстве, с точностью 20-40' по углам и 20-30 м по дальности, а также способность разрешать объекты, разнесенные относительно РЛС на 1-2o. Кроме того, измеренные координаты при первичном обнаружении должны уточняться в процессе движения, т.е. объекты должны сопровождаться. Таким образом, процесс контроля воздушного пространства заключается как в обнаружении объекта, так и в сопровождении при его пролете через контролируемую зону, имеющую обычно угловой размер


























Эок=Э1к


где Э1к затраты энергии РЛСк на одно зондирование;
F частота зондирования;
Tо период обзора пространства. Недостаток способа обнаружения и сопровождения объектов в коротковолновом, например, S-диапазоне состоит в необходимости излучения сравнительно большого количества ВЧ-энергии, что приводит к большим затратам энергетических ресурсов и к ухудшению экологической обстановки в зоне расположения РЛС. Особенно этот недостаток проявляется при решении задачи обнаружения и сопровождения малозаметных объектов, под которыми имеются в виду как летательные аппараты с малыми линейными размерами, т.е. с малой ЭПР, так и объекты, созданные по технологии, обеспечивающей их слабую радиозаметность, например, по технологии Stealth (Interavia, 1987, IV, p.331-333), что эквивалентно также малой ЭПР. Так, если ЭПР малозаметного объекта составляет, например, величину 0,1 м2, то для его обнаружения на дальности 100 км необходимо увеличить затраты энергии RAT-31S в 30 раз. Известен способ обнаружения и сопровождения на основе собственных излучений радиоэлектронных средств объекта в коротковолновом, например, S-диапазоне (Теоретические основы радиолокации, под ред. Я.Д.Ширмана, Сов.радио, М. 1970, с. 494). Поскольку дальность до источника излучения не может быть определена по данным приема только в одном пункте, то для определения всех координат одного объекта требуется комплекс не менее чем из двух РЛС, а если объектов несколько, то возникает неоднозначность в измерении, для устранения которой требуется большее их число. На фиг.3 дано пояснение сути триангуляционного способа (см. там же) определения координат излучающего объекта в горизонтальной плоскости для случая, когда высота полета объекта (точка О) H << r1, r2 (r1, r2 дальность от РЛС1, РЛС2 до объекта), т.е. что объект находится по отношению к РЛС1 и РЛС2 под нулевым углом места e1






где Б расстояние между РЛС1 и РЛС2. Недостаток этого способа в том, что объекты нерегулярно излучают сигналы, а некоторые вообще могут их не излучать. Наиболее близким техническим решением является способ обнаружения и сопровождения объектов, основанный на оборе пространства длинноволновой РЛС (РЛС0) и передаче информации о координатах объектов коротковолновой РЛСк, которая после обнаружения по этим данным объекта осуществляет его сопровождение (Interavia, 1987, IV, p. 331-333). Эффективность способа основана на том, что современные летательные аппараты (ЛА) имеют в длинноволновом диапазоне ЭПР значительно выше, чем в коротковолновом диапазоне. Так, например, в УВЧ-диапазоне ЭПР в 7 раз выше, чем в S-диапазоне, а для перспективных ЛА эта разница составит 100 раз (БИНТИ N 46 (2291), ТАСС 12.11.86). В статье Effect of Radar Frequency on the Detection of Shaped (LowRCS) Targets D.Moraitis, S.Alland, IEEE, 1985, Radar-85 p.p. 159-162. показано, что ЭПР многих радиолокационных объектов может быть представлена зависимостью:


где

l длина волны РЛС,
n фактор формы объекта. Для форм объекта с низкой ЭПР n=2. Там же показано, что дальность обнаружения малозаметных объектов длинноволновыми РЛС увеличивается в 1,75 раза по сравнению с РЛС S-диапазона и в 2,2 раза по сравнению с РЛС более коротковолнового C-диапазона. Это означает, что при прочих равных условиях для зондирования одного направления затраты энергии длинноволновой РЛСд с длиной волны lд могут быть уменьшены по сравнению с затратами РЛСк с длиной волны


где Эод- затраты энергии длинноволновой РЛСд на один период обзора заданного пространства. Но как уже отмечалось, для получения требуемого разрешения объектов по угловым координатам необходимо использовать, как минимум, S-диапазон. Поэтому в способе-прототипе предусмотрено, что после обнаружения объекта длинноволновой РЛСд данные о его координатах передаются коротковолновой РЛСк, которая после обнаружения по этим данным ведет его сопровождение точно так же, как и в способе-аналоге, т.е. путем зондирования К направлений в экстраполяционном стробе. Экономия затрат энергии на обнаружение РЛСк S-диапазона в способе-прототипе по сравнению с аналогом происходит за счет того, что вместо регулярного обзора всего пространства, в процессе которого происходит излучение энергии в объеме



nТо










где nТо число новых объектов, обнаруженных РЛСд на период обзора пространства Tо;

















где





где Э(noк) затраты энергии РЛСк в способе-прототипе на первичное обнаружение nТо объектов. После обнаружения объекта с помощью РЛСк определяют более точные его угловые координаты и ведут его сопровождение, как показано выше, путем зондирования K >> 1 направлений в экстраполяционном стробе. Поскольку надобность в регулярном обзоре с помощью РЛСк при этом способе отпадает, то зондирование K направлений с помощью РЛСк осуществляется только в интересах получения требуемой точности измерения угловых координат. Затраты энергии за один период обзора на сопровождение N объектов составят величину

где Э(Nск) затраты энергии РЛСк в способе-прототипе за время To на сопровождение N объектов, находящихся в контролируемой зоне усредненное время t. Тогда общие затраты энергии за время To комплекса РЛСд + РЛСк в способе-прототипе на обнаружение и сопровождение объектов с учетом (5), (7) и (8) будут равны

Выигрыш в общих затратах энергии на обнаружение и сопровождение объектов способа-прототипа W(п) в соответствии с (4) и (9) составит величину:

Для реальных значений, с учетом (3):

выигрыш составит величину
W(п)

Анализируя (10) можно сделать вывод, что выигрыш для реальных значений параметров (11) ограничивается величиной затрат РЛСк и, в первую очередь, на сопровождение объектов. Действительно, в соответствии с (4), (7) и (8) затраты РЛСк на сопровождение объектов превосходят ее же затраты на первичное их обнаружение за один период обзора:

Для значений (11), независимо от nТо

Недостаток способа-прототипа обнаружения и сопровождения объектов состоит в сравнительно больших затратах энергии коротковолновой РЛС на сопровождение. Заявляемое изобретение направлено на решение следующей задачи: сокращение затрат энергии коротковолновой РЛСк на сопровождение объекта. Эта задача решается путем увеличения точности измерения угловой координаты объекта при приеме сигнала РЛС с одиночного направления. Указанный результат достигается тем, что в известном способе радиолокационного обнаружения и сопровождения объектов, заключающемся в обзоре пространства длинноволновой РЛС и передаче информации о координатах объектов коротковолновой, согласно изобретению точные координаты определяют на основе совместного измерения дальности до объектов разнесенными в пространстве коротковолновой и длинноволновой РЛС. Таким образом, суть изобретения состоит в следующем. С помощью длинноволновой РЛСд осуществляют обзор пространства, обнаруживают объект, измеряют до него дальность rд и угловую координату





Таким образом, с помощью РДСд определяют, что объект находится в четырехугольнике abcd. С помощью РЛСк просматривают пространство, ограниченное этим четырехугольником, в момент времени ti +







Поэтому в дальнейшем считаем, что rд и rк получают в один момент времени ti. По данным




Радиальную скорость Vк по отношению к РЛСк определяют аналогично (13). По полученным данным, как в известном способе, определяют параметры экстраполяционного строба, в следующем периоде обзора просматривают его с помощью РЛСд и РЛСк, причем с помощью РЛСк зондируют направления этого строба только до получения первого сигнала (вместо зондирования К направлений вокруг объекта), поскольку точность измерения угла





где




где

C скорость распространения э-м энергии. Для сигнала с прямоугольным спектром выражение для


где q отношение сигнал/шум;

(rk-rд)2<<Б и r2д,r2к>>Б2
Это соотношение имеет место, например, при использовании комплекса РЛСк и РЛСд для трассовой локации гражданской авиации с базой, перпендикулярной основному направлению движения самолетов. Из (15) и (16) получим

Из (2) и (17) получим размер экстраполяционного строба для предлагаемого способа с разносом РЛС:

Поскольку для измерения угловой координаты достаточно получения сигнала с одного направления, то путем выбора Б при достигаемых значениях









Б

Таким образом, использование предлагаемого способа вместо способа-прототипа позволяет сократить затраты энергии РЛСк на сопровождение объекта для параметров, определяемых (11), в 6 раз.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4