Фазовый параметрический гидролокатор
Изобретение относится к гидроакустическим измерительным системам и предназначено для классификации донных отложений, а также для обнаружения и классификации донных и придонных объектов по акустическому импедансу.
Фазовый параметрический гидролокатор, содержащий последовательно соединенные синхронизатор 1, генератор радиоимпульса 2, усилитель мощности 3, излучатель 4, последовательно соединенные измеритель фазового сдвига 10 и индикатор 11, два избирательных усилителя 8 и 9, выходы каждого из которых соединены с соответствующими входами измерителя фазового сдвига 10. В гидролокатор введены формирователь управляющего сигнала 5 и последовательно соединенные низкочастотная антенна 6 и усилитель сигналов разностных частот 7, выход которого подключен к входам избирательных усилителей 8 и 9, управляющий вход первого из которых подключен к первому выходу управления генератора радиоимпульса 2, а управляющий вход второго - к выходу формирователя управляющего сигнала 5, два входа которого соединены соответственно с двумя выходами управления генератора радиоимпульса 2. Предложенный фазовый параметрический гидролокатор обладает широким частотным диапазоном работы (более октавы), повышенной точностью и достоверностью результатов измерения фазового сдвига эхосигналов и, следовательно, классификации донных отложений, донных и придонных объектов. 2 з.п. ф-лы, 11 ил.
Bзобретение относится к гидроакустическим измерительным системам и предназначено для классификации донных отложений, а также для обнаружения и классификации донных и придонных объектов по акустическому импедансу. Классификация типов донных грунтов и объектов локации по акустическому импедансу осуществляется с помощью бигармонического сигнала с кратными частотами [1, 2] Получение многочастотных сигналов, жестко связанных по фазе, обеспечивается благодаря применению параметрического возбуждения излучателя. Известен ряд устройств для определения характеристик и дистанционной классификации подводных объектов с использованием фазочастотных характеристик (ФЧХ) [1] Применение обычных линейных антенн в устройствах подобного типа (например, патент ФРГ N 2006153) связано с рядом недостатков: излучающий преобразователь должен быть весьма широкополосным (не менее октавы), генераторные блоки должны иметь идентичные ФЧХ, кроме того, в результате неоднородностей в воде нарушается фазовый синхронизм излучаемых сигналов. Известное устройство [3] принятое в качестве прототипа, содержит последовательно соединенные синхронизатор, генератор радиоимпульса, усилитель мощности и акустический излучатель, два канала усиления эхосигнала, каждый из которых содержит последовательно соединенные приемный преобразователь, избирательный (резонансный) усилитель и амплитудный ограничитель, а также удвоитель частоты, фазовый детектор и индикатор, подключенный к выходу фазового детектора, первый вход которого связан через удвоитель частоты с выходом первого канала усиления эхосигнала, а второй с выходом второго канала усиления. В этом устройстве акустический излучатель работает в режиме излучения импульсного гармонического колебания [3] В среде из-за ее нелинейности происходит формирование гармоник с частотами, кратными частоте излучаемого сигнала f0, т. е. 2f0, 3f0 и т.д. При отражении от подводного объекта или донного грунта происходит изменение (сдвиг) фазы гармоник, обусловленное отличием акустического импеданса объекта от импеданса воды. Первая и вторая гармоники эхосигналов используются для определения этого фазового сдвига. Устройство-прототип обладает целым рядом существенных недостатков, основным из которых является малый частотный диапазон измерения ФЧХ объектов локации. Последний ограничивается широкополосностью как передающей, так и приемных антенн, и в данном устройстве, составляет не более нескольких процентов от несущей частоты ( в пределах полосы пропускания антенн). Необходимо также иметь в виду, что высокочастотные колебания не проникают в толщу грунта и объекта и поэтому не могут использоваться для классификации донных осадков, а также для обнаружения и классификации заиленных объектов. Другими существенными недостатками прототипа являются низкие точность и достоверность измерения фазового сдвига. Связано это с тем, что измеритель фазового сдвига выполнен на базе фазового детектора с предварительным удвоением частоты колебаний первой гармоники эхосигнала. Как известно [5] значение сигнала на выходе фазового детектора, являющееся в данном случае оценкой фазового сдвига, зависит не только от разности фаз входных сигналов, но и от их амплитуд. Влияние амплитуд входных сигналов на результат измерения уменьшают с помощью амплитудных ограничителей на входе фазового детектора. Естественно, что погрешность работы амплитудных ограничителей, особенно при большом динамическом диапазоне входных сигналов, существенно влияет на результат измерения. Качество работы фазового детектора также в сильной степени зависит от симметрии схемы и стабильности параметров ее элементов. Кроме того, при измерении разности фаз импульсных сигналов (длительностью 10 15 периодов несущей частоты) возникает проблема в реализации высокого быстродействия измерителя фазы при низком уровне пульсаций выходного сигнала. При этом постоянная времени нагрузки фазового детектора должна удовлетворять противоречивым требованиям. С одной стороны, значение ее должно быть меньше 1 -2 периодов несущей частоты, а с другой существенно превышать этот период. Задачей предлагаемого изобретения является создание фазового параметрического гидролокатора, работающего в широком частотном диапазоне, а также обладающего повышенной точностью и достоверностью измерения ФЧХ-объектов локации. Это достигается тем, что для измерения ФЧХ используются бигармонические эхосигналы волн разностных частот (ВРЧ), возникающие в среде при излучении сигнала с внутриимпульсной амплитудной модуляцией, а также усиление эхосигналов ВРЧ осуществляется путем двойного преобразования частоты и измерение собственно фазового сдвига выполняется на основе фиксирования моментов перехода через "нуль" эхосигналами ВРЧ: второй гармоникой в положительном направлении, а первой в обоих направлениях. Указанный технический эффект достигается тем, что в известный гидролокатор, содержащий последовательно соединенные синхронизатор, генератор радиоимпульса, усилитель мощности и излучатель, последовательно соединенные измеритель фазового сдвига и индикатор и два избирательных усилителя, выходы каждого из которых соединены с соответствующими входами измерителя фазового сдвига, введены формирователь управляющего сигнала и последовательно соединенные низкочастотная антенна и усилитель сигналов разностных частот, выход которого подключен к входам избирательных усилителей, управляющий вход первого из которых подключен к первому выходу управления генератора радиоимпульса, а управляющий вход второго к выходу формирователя управляющего сигнала, два входа которого соединены соответственно с двумя выходами управления генератора радиоимпульса. В предложенном гидролокаторе избирательные усилители могут быть выполнены по схеме с двойным преобразованием частоты и содержат последовательно соединенные первый перемножитель сигналов, полосовой фильтр с фиксированной настройкой, второй перемножитель сигналов и фильтр нижних частот (ФНЧ), выход которого является выходом усилителя, входом которого является сигнальный вход первого перемножителя сигналов, управляющий вход которого соединен параллельно с управляющим входом второго перемножителя сигналов и является управляющим входом избирательного усилителя. В предложенном гидролокаторе измеритель фазового сдвига может содержать два фиксатора нулевого уровня, RS-триггер и последовательно соединенные масштабный генератор, счетчик, регистр и цифроаналоговый преобразователь, выход которого является выходом измерителя фазового сдвига, парой входов которого являются соответственно входы фиксаторов нулевого уровня, выход первого из которых подключен к входу S RS-триггера, а выход второго к входу R RS-триггера, выход которого соединен с входом разрешения счета счетчика и входом записи регистра. На фиг. 1 дана структурная схема предлагаемого гидролокатора; на фиг. 2 5 структурные схемы отдельных его блоков: фиг. 2 генератора радиоимпульса, фиг. 3 формирователя управляющего сигнала, фиг. 4 избирательного усилителя (одной из гармоник эхосигнала ВРЧ), фиг. 5 измерителя фазового сдвига; на фиг. 6 временные диаграммы работы генератора радиоимпульса 2; на фиг. 7 - осциллограммы на выходе блоков 3, 6 9; на фиг. 8 и 9 -спектральные диаграммы (спектрограммы), поясняющие принцип функционирования избирательного усилителя и формирователя управляющего сигнала; на фиг. 10 временные диаграммы работы измерителя фазового сдвига; на фиг. 11 осциллограммы сигналов, полученных в натурном эксперименте. Фазовый параметрический гидролокатор (фиг. 1) содержит синхронизатор 1, генератор радиоимпульса (ГРИ) 2, усилитель мощности 3, излучатель 4, формирователь управляющего сигнала (ФУС) 5, приемную низкочастотную антенну 6, усилитель сигналов разностных частот (УСРЧ) 7, избирательные усилители 8 и 9, измеритель фазового сдвига (ИФС) 10, индикатор 11. Синхронизатор 1, генератор радиоимпульса 2, усилитель мощности 3 и излучатель 4 соединены последовательно. Два выхода управления генератора радиоимпульса 2 подключены к соответствующим входам формирователя управляющего сигнала 5. Приемная низкочастотная антенна 6 включена на входе усилителя сигналов разностных частот 7, выход которого соединен с входами избирательных усилителей 8 и 9, управляющие входы которых подключены соответственно к первому выходу управления генератора радиоимпульса 2 и выходу формирователя управляющего сигнала 5. Выход каждого избирательного усилителя 8 и 9 подключен к соответствующему входу измерителя фазового сдвига 10, выход которого соединен с входом индикатора 11. Синхронизатор 1 может быть выполнен в виде последовательно соединенных задающего генератора и счетчика. В качестве задающего генератора используется мультивибратор на таймере 1006ВИ1 [4] а счетчик выполняется на стандартных микросхемах 176 или 561 серий (например, К176ИЕ8). Генератор радиоимпульса (ГРИ) 2, пример реализации которого приведен на фиг. 2, содержит два синхронизированных генератора 12 и 13 соответственно с частотами fн и fг1 последовательно соединенные первый перемножитель сигналов 14, фильтр нижних частот (ФНЧ) 15, второй перемножитель сигналов 16, электронный ключ 17 и ждущий мультивибратор 18, вход которого соединен с выходом синхронизатора 1, а выход подключен к управляющему входу электронного ключа 17, выход которого является выходом ГРИ 2. Выходы генераторов 12 и 13, представляющие собой соответственно первый и второй выходы управления ГРИ 2, подключены соответственно к первому и второму входам первого перемножителя 14, а выход генератора 12 подключен также к второму входу перемножителя 16. Входы синхронизации генераторов 12 и 13 соединены между собой и являются входом генератора радиоимпульса 2. Перемножители реализуются на микросхемах (типа К140МА1, К525ПС1 -К525ПС3 и др. ). ФНЧ выполнен как традиционный баттервортовский фильтр на LC-элементах и имеет полосу пропускания (порядка 30 кГц), достаточную для пропускания разностной частоты F fн fн1. Генераторы 12 и 13, электронный ключ и ждущий мультивибратор строятся по типовым схемам. Усилитель мощности 3 выполняется по типовой схеме двухтактного усилителя мощности на транзисторах типа КТ847А. Излучатель 4 может быть выполнен на основе пьезокерамики. В действующем макете фазового параметрического гидролокатора применен круглый излучатель диаметром 100 мм на основе пьезокерамики типа Т5К. Резонансная частота 300 кГц, диаграмма направленности (ДН) антенны на частотах накачки в обеих плоскостях имеет ширину порядка 4o. Формирователь управляющего сигнала (ФУС) 5 (фиг. 3) содержит последовательно соединенные два перемножителя сигналов 19 и 20 и ФНЧ 21, причем два входа первого перемножителя 19 объединены и являются первым входом ФУС, второй вход второго перемножителя 20 является вторым входом ФУС, а выход ФНЧ 21 выходом формирователя управляющего сигнала. В качестве приемной низкочастотной антенны 6 может быть использован стандартный гидрофон типа 1П-2Г, имеющий рабочий диапазон частот от 0,5 Гц до 20 кГц и чувствительность 180, 150 и 120 мкВ/Па соответственно на частотах 2, 10 и 20 кГц. Усилитель сигналов разностных частот (УСРЧ) 7 представляет собой последовательно соединенные ФНЧ с полосой пропускания, достаточной для пропускания эхосигналов волн разностных частот (F и 2F), и усилитель нижних частот, выполненный, например, на базе стандартного операционного усилителя - на базе микросхемы К548УН1. Избирательные усилители 8 и 9 выполнены по схеме двойного преобразования частоты (фиг. 4) и содержат последовательно соединенные первый перемножитель сигналов 22, полосовой фильтр 23 с фиксированной настройкой, второй перемножитель сигналов 24 и ФНЧ 25, выход которого является выходом избирательного усилителя, входом которого служит сигнальный вход первого перемножителя сигналов 22, управляющий вход которого соединен параллельно с управляющим входом второго перемножителя сигналов 24 и является управляющим входом избирательного усилителя. Измеритель фазового сдвига (ИФС) 10, схема реализации которого приведена на фиг. 5, содержит два фиксатора нулевого уровня 26 и 27, RS-триггер 28 и последовательно соединенные масштабный генератор 29, счетчик 30, регистр 31 и цифроаналоговый преобразователь (ЦАП) 32, выход которого является выходом измерителя фазового сдвига, два входа которого являются входами соответственно первого и второго фиксаторов нулевого уровня 26 и 27, выход первого из которых подключен к входу S RS-триггера 28, а выход второго к входу R RS-триггера 28, выход которого соединен с входом разрешения счета счетчика 30 и входом записи регистра 31. В основу работы гидролокатора, предназначенного для классификации донных отложений и объектов локации, положено исследование их фазочастотных характеристик (ФЧХ) с помощью бигармонических фазосвязанных сигналов, образующихся в среде при излучении сигналов с внутриимпульсной амплитудной модуляцией. Модуляция несущего колебания осуществляется гармоническим сигналом с частотой F. В спектре такого колебания содержатся три частотные компоненты (fн, fн F, fн + F), между которыми происходит нелинейное взаимодействие в среде. В результате образуются колебания с комбинационными частотами (fкомб kfн + m












S(t) = S1sin





где





Эхосигнал, формирующийся при отражении сигнала (3) от объектов, имеет вид:

где SЭ1 и SЭ2 амплитуды на частотах F и 2F, зависящие от эффективной площади рассеяния, АЧХ объекта и расстояния D до него;




fг2 2fг1 fн (5). Перемножитель 19 удваивает частоту fг1 колебаний U13 (фиг. 9,а) путем умножения входного сигнала самого на себя (kU13





где
k 0, 1, 2, Откуда


или
2



где k 0, 1, 2. Откуда
t2k = (1/2



В моменты времени t на выходе фиксатора 27 также вырабатываются короткие импульсы U27(t) (фиг. 10,б). На основании (6) и (7) временной интервал между t1К и t2К будет:



То есть измерение фазового сдвига можно выполнить, измеряя

Сигналы U26(t) и U27(t) поступают соответственно на входы S и R триггера 28, на выходе которого формируется последовательность прямоугольных импульсов U28(t) (фиг. 6,б). Длительность этих импульсов



где


TW 1/F период колебаний первой гармоники ВРЧ,
Dtmax =




Начальная установка счетчика 30 осуществляется передним фронтом импульса U28(t). Накопленное счетчиком число, соответствующее количеству масштабных меток, в момент окончания импульса U28(t) переписывается в регистр 31 и сохраняется в нем до момента окончания следующего импульса U28(t). Таким образом, значение измеряемого фазового сдвига на выходе регистра 31 представлено в цифровой форме. Для получения результатов измерения в аналоговой форме информация, хранящаяся в регистре 31, преобразуется с помощью ЦАП 32. Как следует из приведенного описания, предложенная схема измерителя фазового сдвига обладает по сравнению с соответствующей схемой прототипа высокой точностью и достоверностью измерения ФЧХ объектов локации. На фиг. 11 представлены осциллограммы напряжений первой гармоники ВРЧ (а) и выходного сигнала измерителя фазового сдвига (б), полученные в натурном эксперименте с помощью экспериментального макета фазового параметрического гидролокатора. В качестве объекта локации был использован полый дюралевый сфероцилиндр, заполненный воздухом. Зондирование проводилось в горизонтальной плоскости, перпендикулярно оси сфероцилиндра. Перед сфероцилиндром был установлен гидрофон, который позволял регистрировать как падающую, так и отраженную волну. На фиг. 11,а более мощному сигналу соответствует падающая волна. Разность фаз в падающей (область 1) и отраженной (область 2) волнах имеет разные значения, что естественно определяется акустическими свойствами объекта. В области 3, где сигналы отсутствуют и действует только гидроакустический шум, фаза имеет случайное значение, равномерно распределенное в диапазоне от 0 до 360o. Использование параметрической антенны в режиме излучения сигнала с внутриимпульсной амплитудной модуляцией, введение формирователя управляющего сигнала, выполнение избирательных усилителей по схеме с двойным преобразованием, а измерителя фазового сдвига в виде преобразователя фаза - временной интервал позволило: во-первых, расширить относительный частотный диапазон работы гидролокатора (не менее октавы), во-вторых, повысить точность и достоверность получаемых результатов измерения. Кроме того, предложенное исполнение избирательных усилителей с двойным преобразованием частоты обеспечивает фильтрацию гармоник ВРЧ в заданном частотном диапазоне с помощью фильтра с фиксированной (а не перестраиваемой) настройкой. Это имеет решающее значение для упрощения приемного тракта гидролокатора. Решение аналогичной задачи в устройстве-прототипе ведет к усложнению конструкции приемника ввиду необходимости согласованной перестройки избирательных усилителей при изменении частоты колебаний сигнала накачки. Источники информации
1. Телятников В. И. Методы и устройства классификации гидроакустических сигналов, //Зарубежная радиоэлектроника, 1979, N 9, с. 19 38. 2. Волощенко В.Ю. Максимов В.Н. Экспериментальные исследования параметрического локатора для классификации подводных объектов, В кн. Прикладная акустика, Таганрог, ТРТИ, 1985, вып. XII. с. 36 39. 3. Волощенко В.Ю. Максимов В.Н. Тимошенко В.И. Параметрическая акустическая система для классификации объектов лоцирования. // Акустика и ультразвуковая техника, Киев, 1986, N 21, с. 63 65. 4. Коломбет Е.А. Микроэлектронные средства обработки аналоговых сигналов, М. Радио и связь, 1991, 376 с. 5. Бобров Н.В. Максимов Г.В. Мичурин В.И. Николаев Д.П. Расчет радиоприемников, М. Воениздат, 1971, 496 с.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11