Способ пуска синхронных машин и устройство для его осуществления
Использование: в преобразовательной технике и в синхронном электроприводе. Сущность: в способе пуска синхронной машины в течение периода пуска, когда обмотка возбуждения подключена к гасящему устройству, а обмотка статора - к первичной электросети, до момента достижения ротором синхронной машины подсинхронной частоты вращения контролируют величину, частоту и фазу напряжения первичной сети, величину ЭДС в роторе и фазу тока возбуждения и регулируют по фазе, величине и знаку упомянутый ток один раз за каждый полупериод относительной частоты ЭДС обмотки возбуждения ротора по закону IAR = SIR
T/
N в течение времени, при котором оси магнитных потоков статора и ротора находятся в квазисинхронном взаиморасположении в пределах угла нагрузки, определяемом моментом совпадения контролируемых параметров, где IAR - изменение тока ротора; S - синус угла нагрузки синхронной машины; IR - номинальный ток обмотки возбуждения ротора;
N - текущая частота вращения ротора,
T - частота первичной сети. В результате обеспечивается расширение технологических возможностей использования синхронной машины при одновременном снижении динамических нагрузок. 2 с. и 7 з.п. ф-лы, 1 ил.
Изобретение относится к области электротехники, а именно к синхронным машинам, преобразовательной технике и синхронному электроприводу.
Известно, что синхронный двигатель (с.д.) не имеет начального пускового момента. Для пуска в ход с. д. необходимо разогнать его ротор с помощью внешнего момента до частоты вращения, близкой к синхронной (подсинхронной). Одним из главных недостатков, ограничивающих технологические возможности использования с.д. является сравнительная сложность пуска его в ход. Известны следующие способы пуска с.д. 1. Частотный способ пуска с.д. (см. В.И.Ключев. Ограничение динамических нагрузок электропривода. М. Энергия, 1971, с. 97 161). Сущность данного способа. Если обмотку статора с.д. подключить к сети переменного тока, когда ротор его неподвижен, а по обмотке возбуждения (о.в.) проходит постоянный ток, при этом частота сети посредством внешнего устройства имеет возможность плавного изменения от сколь угодно малого значения до некоторой максимальной конечной частоты, сохраняя закон соответствия частоте f питающего напряжения U в виде U/f const, то нарастание движущего момента с.д. будет происходить с учетом приведенного момента инерции в пределах угла нагрузки, и пуск двигателя в ход будет происходить без динамической нагрузки плавно, но наличие датчика или вычислителя положения оси магнитного потока с.д. обязательно. В качестве источника энергопитания (устройства пускового) с.д. реализующего закон U/f const, как правило, служит регулируемый выпрямитель в паре с зависимым инвертором тока до момента достижения заданной требованием технологического процесса скорости ротора. Недостатки данного способа. Стоимостные и массогабаритные показатели источника питания (выпрямитель-инвертор) могут быть экономически оправданы только со стороны ограничений технологического процесса, в котором принимает участие конкретный с.д. Снижения показателей качества электроэнергии электросети пропорциональны установленной мощности синхронного привода (выпрямитель-инвертор-с. д.). Необходима, как правило, стабилизация параметров качества электросети, и она достигается подключением параллельно нагрузке (выпрямитель-инвертор-с. д. ) фильтров-компенсаторов. Такие действия экономически целесообразны при жестких ограничениях со стороны технологического процесса, в котором принимает участие конкретный синхронный привод. Как правило, напряжение питания с.д. составляет значительно выше 1000 В, что не может не отразиться отрицательно на стоимостных и массогабаритных показателях привода и, следовательно, способе частотного пуска и регулирования с.д. 2. Импульсный способ пуска с.д. (см. Г.А.Ривкин. Преобразовательные устройства. М. Энергия, 1970, с. 158 -197). Сущность данного способа. Если на период пуска с.д. подключить о.в. ротора к устройству возбуждения, а обмотку статора к электросети через преобразователь частоты, ведомый сетью, причем достаточно подключить одну из фаз с.д. (какую именно, определяют посредством датчика оси магнитного поля ротора по отношению к оси магнитного поля ближайшей фазы) и, определив угол фазового сдвига оси магнитного потока ротора и соответствующей фазы статора, подать импульс тока определенной длительности, амплитуды и направления именно в эту фазу обмотки статора, то возникает ускоряющий электромагнитный момент как результат взаимодействия магнитного поля статора и ротора в течение времени действия импульса тока статора. Результатом этого взаимодействия будет ускорение движения ротора в выбранном направлении с некоторым ускорением. Через 180 электрических градусов операцию повторяют необходимое число раз с учетом предыдущего приобретенного ротором ускорения, т.е. с учетом приращения амплитуды и длительности каждого последующего импульса по сравнению с предыдущим. Таким образом, ротор придет в ускоренное движение. По достижении заданной технологическим процессом конечной частоты ротора обмотку статора с.д. переключают на электросеть, после чего ротор втягивается в синхронизм. Недостатки данного способа. Невысокие стоимостные и массогабаритные показатели при редких пусках. Необходимость стабилизации параметров показателей качества электроэнергии пропорционально количеству пусков, продолжительности пусков и установленной мощности синхронного привода. Параллельно нагрузке (преобразователь-с. д.) необходимо подключение фильтров- компенсаторов. Преобразователи и фильтры-компенсаторы при использовании данного способа являются устройствами, работающими, как правило, при напряжении свыше 1000 В, что порождает гораздо больше проблем, чем призвано разрешить согласно технологическому процессу. При этом максимальный момент нагрузки в режиме пуска не превышает 30% от номинального. 3. Способ пуска регулированием напряжения электросети (см. А.И.Венгер. Регулируемый синхронный электропривод. М. "Энергоатомиздат", 1985, с. 47 - 70). Сущность данного способа. Данный способ является разновидностью широко известного асинхронного способа пуска с.д. Согласно данному способу обмотка статора с.д. через регулятор напряжения электросети подключается к электросети, о.в. ротора замыкается на гасящее устройство (как правило, магазин резисторов с сопротивлением, в 8 12 раз превышающим активное сопротивление о. в. ротора), расположенное вне с.д. Регулятор, как правило, выполнен в виде встречно-параллельных тиристорных ключей по числу фаз сети с.д. Скорость нарастания напряжения пропорциональна скорости нарастания момента нагрузки в степени 0,5. По достижении ротором заданной технологическим процессом частоты (подсинхронной) обмотку статора переключают на электросеть, а о.в. переключают на устройство возбуждения, после чего ротор втягивается в синхронизм. Недостатки данного способа. Невысокие экономические и массагабаритные показатели, особенно при редких пусках. Необходимость стабилизации параметров качества электросети пропорциональна количеству пусков, продолжительности пусков и установленной мощности привода. Параллельно нагрузке (регулятор-с. д. ) необходимо подключение фильтров-компенсаторов. Регулятор напряжения и фильтры-компенсаторы в данном способе являются устройствами, работающими, как правило, свыше 1000 В, что зачастую порождает гораздо больше проблем, чем призвано разрешить согласно технологическому процессу. Максимальный момент в период пуска пропорционален второй степени напряжения регулятора и не превышает 30% Описанные выше способы и устройства обеспечивают разгон с.д. путем изменения параметров электросети, питающей статор с.д. По этому основному признаку все изложенные способы эквивалентны одному: способ пуска и устройство пусковое путем изменения параметров электросети, питающей обмотку статора (как правило, значительно выше 1000 В). Недостатки, присущие способам пуска изменением параметров электросети статора, также в основном общие: снижение параметров качества электросети, напряжение свыше 1000 В, ограничения со стороны динамических возможностей с.д. и технологических возможностей привода. В отличие от изложенных выше способов и устройств пуска с.д. асинхронный способ пуска с.д. не содержит устройств, предназначенных для изменения параметров электросети статора. Асинхронный способ пуска является наиболее близким к заявляемому техническому решению и принят авторами за прототип (см. Д. Э. Брускин, А.В.Зорохович, В.С.Хвостов. "Электрические машины", ч. 2. М. Высшая школа, 1979, с. 99 122). Сущность данного способа. С. д. пускают в ход как асинхронный, для чего с.д. снабжают специальной короткозамкнутой (к. з. ) пусковой обмоткой, выполненной по типу беличьей клетки с повышенным сопротивлением стержней. При включении обмотки статора в электросеть образуется вращающееся магнитное поле, которое, взаимодействуя с током в пусковой обмотке, создает электромагнитный момент и увлекает за собой ротор. Если пусковая обмотка отсутствует (это возможно у с.д. с неявно выраженными полюсами о. в. ротора), то в сплошном теле ротора возникает по закону электромагнитной индукции ток, магнитный поток которого взаимодействует с магнитным потоком статора и увлекает за собой ротор. Пуск с.д. в этом случае происходит как у асинхронного двигателя (а.д.) с массивным ротором. При обеих разновидностях с.д. ротора их замыкают на внешнее гасящее устройство (как правило, магазин сопротивлений-резисторов), которое позволяет снизить уровень выделения энергии в о.в. до уровня допустимого. По достижении ротором частоты вращения, близкой к синхронной (подсинхронной), о.в. переключают с гасящего устройства на устройство возбуждения. Проходящий по о. в. от устройства возбуждения ток создает синхронизующий момент, который втягивает ротор в синхронизм. Недостатки данного способа. В процессе пуска выделяется значительное количество тепловой энергии в теле ротора. Применение специальных пусковых обмоток частично решает задачу пуска с.д. но универсальность достигается нанесением значительного урона основному качеству с. д. Способ асинхронного пуска не- применим (или имеет ограничения по числу пусков и их продолжительности) при большом приведенном моменте инерции на валу ротора с.д. что может вызвать нежелательные последствия, как правило, вследствие динамических перегрузок, не предусмотренных технологическим процессом механизма, который обслуживает данный с.д. Применение реакторов, автотрансформаторов ограничивает область технологического использования с.д. приводит к режимам автоколебательного характера, сопровождается снижением стоимостных и массогабаритных показателей синхронного привода. Асинхронный способ пуска посредством регулятора напряжения статора, как было указано выше, к плохой динамике добавляет искажение параметров электросети, причем путем повышения затрат на синхронный привод. Технический результат, достигаемый изобретением, расширение технологических возможностей использования с.м. при одновременном снижении динамических нагрузок. Данный технический результат достигается тем, что в течение всего периода пуска синхронной машины с обмоткой возбуждения на роторе и многофазной обмоткой статора многофазную обмотку статора подключают к первичной электросети соответствующей частоты, а обмотку возбуждения ротора к гасящему устройству и при достижении ротором с.м. подсинхронной частоты вращения о.в. отключают от гасящего устройства и подключают к устройству возбуждения, и до момента достижения ротором с.м. подсинхронной частоты вращения контролируют величину, частоту и фазу напряжения первичной электросети, величину индуктированной в обмотке возбуждения ротора ЭДС, частоту и фазу тока о.в. и регулируют по фазе, величине и знаку упомянутый ток и связанный с ним магнитный поток в роторе один раз за каждый полупериод относительной частоты индуктированной в о.в. ротора ЭДС в соответствии с законом: IAR S



где L индуктивность цепи;
di производная тока этой цепи;
dt интервал времени;
E амплитуда ЭДС источника;
Sin синус;

T время,
и через соответствующие входы подключено к постоянному запоминающему устройству (ПЗУ), оперативно-запоминающему устройству (ОЗУ), генератору тактовой частоты (ГТЧ) блока управления, а через устройство ввода к датчику параметров напряжения первичной электросети, датчикам ЭДС и тока обмотки возбуждения ротора, и соответствующими выходами через устройство вывода к управляющим входам блока ключей и переключателя. Блок ключей выполнен в виде блока встречно-параллельных тиристоров. Датчик ЭДС и датчик тока обмотки возбуждения ротора, датчик параметров первичной электросети выполнены в виде аналого-цифровых преобразователей. Датчик ЭДС и датчик тока обмотки возбуждения ротора, датчик параметров первичной электросети выполнены в виде преобразователей ток-частота, напряжение-частота соответственно. Средства связи, соединенные с устройством ввода и устройством вывода, выполнены в виде волоконно-оптических линий связи. Гасящее устройство выполнено высокоомным. Сравнение заявляемых решений с прототипом показывает, что способ пуска отличается тем, что в течение всего периода пуска синхронной машины с обмоткой возбуждения на роторе и многофазной обмоткой статора, многофазную обмотку статора подключают к первичной электросети соответствующей частоты, а обмотку возбуждения ротора к гасящему устройству, и при достижении ротором с. м. подсинхронной частоты вращения о.в. отключают от гасящего устройства и подключают к устройству возбуждения, и до момента достижения ротором с.м. подсинхронной частоты вращения контролируют величину, частоту и фазу напряжения первичной электросети, величину индуктированной в обмотке возбуждения ротора ЭДС, частоту и фазу тока о.в. и регулируют по фазе, величине и знаку упомянутый ток и связанный с ним магнитный поток в роторе один раз за каждый полупериод относительной частоты индуктированной в о.в. ротора ЭДС в соответствии с законом:
IAR S


где IAR изменение тока ротора;
S синус угла нагрузки с.м. например, S (0,1 0,3);
IR номинальный ток о.в. ротора;
wT текущая частота вращения ротора;
wN частота первичной электросети,
в течение времени, при котором оси магнитного потока статора и магнитного потока ротора находятся в относительно синхронном, квазисинхронном взаиморасположении в пределах угла нагрузки синхронной машины, определяемого моментом совпадения указанных контролируемых параметров. Отсчет фазового угла тока в о.в. ротора производят от момента перехода через ноль ЭДС, индуктируемой в о. в. ротора магнитным потоком статора. Длительность, величину и знак тока о. в. ротора регулируют при высоком электрическом сопротивлении магнитопровода ротора и гасящего устройства. Сравнение заявляемых решений с прототипом показывает, что устройство для осуществления пуска отличается тем, что содержит датчик параметров первичной электросети, пусковое устройство, снабженное датчиком тока и датчиком ЭДС, блоком ключей и блоком управления, датчик ЭДС подключен параллельно к гасящему устройству, к которому подключены последовательно соединенные датчик тока и блок ключей, управляющие электроды которого через линии связи и устройство вывода, так же как через линии связи и устройство вывода, переключатель, а через устройство ввода -датчик параметров напряжения первичной электросети, датчик тока и датчик ЭДС обмотки возбуждения ротора подключены к блоку управления, арифметическо-логическое устройство (АЛУ) которого выполнено с возможностью решения дифференциального уравнения

где L индуктивность цепи;
di производная тока этой цепи;
dt интервал времени;
E амплитуда ЭДС источника;
Sin синус;

T время,
и через соответствующие входы подключено к постоянному запоминающему устройству (ПЗУ), оперативно-запоминающему устройству (ОЗУ), генератору тактовой частоты (ГТЧ) блока управления, а через устройство ввода к датчику параметров напряжения первичной электросети, датчикам ЭДС и тока обмотки возбуждения ротора, и соответствующими выходами через устройство вывода к управляющим входам блока ключей и переключателя. Блок ключей выполнен в виде блока встречно-параллельных тиристоров. Датчик ЭДС и датчик тока обмотки возбуждения ротора, датчик параметров первичной электросети выполнены в виде аналого-цифровых преобразователей. Датчик ЭДС и датчик тока обмотки возбуждения ротора, датчик параметров первичной электросети выполнены в виде преобразователей ток-частота, напряжение-частота соответственно. Средство связи, соединенное с устройством ввода и устройством вывода, выполнено в виде волоконно-оптических линий связи. Гасящее устройство выполнено высокоомным. Сравнение заявляемых решений не только с прототипом, но и с другими техническими решениями в данной области техники не позволило выявить в них данной совокупности признаков. А именно, вышеуказанная совокупность признаков позволяет достигнуть необходимый технический результат, т.е. расширение технологических возможностей использования синхронных машин при одновременном снижении динамических нагрузок. Предлагаемый способ пуска может быть реализован только в с.м. снабженных о. в. на роторе, это условие является необходимым. Необходимым и достаточным условием в отношении конструкции с.м. является то, что магнитопровод ротора должен обладать высоким сопротивлением электрическому току. Известно, что высоким сопротивлением электрическому току обладает, например, магнитопровод ротора, выполненный шихтованным из листов электротехнической стали. Число пазов и число витков о.в. ротора остается таким же, как у с.м. данного конкретного типоразмера. При этом все энергетические характеристики с.м. не претерпевают изменений в худшую сторону, а ток в магнитопроводе ротора в любом режиме не превышает тока намагничивания. Известно, что энергия магнитного поля электрической цепи, подключенной к источнику (через согласующий трансформатор или без него) постоянной по периоду изменения ЭДС (напряжения), обладающей активным сопротивлением R и индуктивностью L, стремится к установившемуся значению, проявление которого особенно заметно при малой длительности интервалов, отведенных на ее изменение. С протеканием или изменением тока в окружающей цепь среде существует сопутствующее всем изменениям тока его магнитное поле, в котором запасается магнитная энергия в виде части, израсходованной питающей цепь источником. В общем виде энергию магнитного поля катушки индуктивности при подключении ее к источнику ЭДС можно записать, используя второе правило Кирхгофа:
E R


Умножим обе части (1) на (i

E







или, подставляя
L


получим
E






где: i ток;
di производная тока;
dt интервал времени;
L индуктивность;
Q потокосцепление. В правой части уравнений (2) и (4) первое слагаемое выражает энергию, переходящую за время dt в тепло (этим слагаемым объясняется необходимость выполнения магнитопровода ротора из электротехнической стали). Наличие второго слагаемого (L



dw L



связанное с увеличением потокосцепления цепи, т.е. с изменением магнитного поля. Отсюда можно заключить, что второе слагаемое выражает прирост энергии магнитного поля при возрастании тока в цепи на величину di за время dt. Полная энергия, запасенная в магнитном поле при возрастании тока от 0 до 1:

Промежуточный вывод из изложенной теоретической части. При прочих равных условиях количество энергии, запасенное в магнитном поле некоторой катушки индуктивности, пропорционально как величине тока, так и его длительности. Последнее означает, что если с.м. представить в виде магнитосвязанных двух систем, первичной статора, подключенного к электросети, и вторичной - магнитопровода ротора с обмоткой, то физическое взаимодействие между ними, выражающееся в появлении движущего момента ротора относительно статора, будет пропорционально при прочих равных условиях величине и длительности тока обмотки статора и величине и длительности тока обмотки ротора. Потери на токи намагничивания х.х. как статора, так и ротора ограничены в основном шихтованной конструкцией их магнитопроводов, и основные токи (их длительность, величина, направление) обмотки статора и ротора как раз и являются определяющими для появления движущего момента между магнитной системой статора и ротора. Как известно, с.м. не имеет начального пускового момента. Если, как в способе асинхронного пуска с.м. статор с.м. подключить к электросети переменного тока напряжением UFN с угловой частотой


При этом величина тока (i) с.м. 1 в цепи о.в. 2 ротора 3 не велика. Не велика, следовательно, и энергия


IAR S


где S=Sin(QU) и, например, в частном случае составляет (0,1 0,3). То есть, ток в о.в. ротора при подсинхронной частоте 0,98


Формула изобретения
IAR = S




в течение времени, при котором оси магнитного потока статора и магнитного потока ротора находятся в относительно синхронном, квазисинхронном, взаиморасположении в пределах угла нагрузки синхронной машины, определяемом моментом совпадения контролируемых параметров,
где IAR изменение тока ротора;
S синус угла нагрузки синхронной машины, например, S (0,1 0,3);
IR номинальный ток обмотки возбуждения ротора;



и через соответствующие входы подключено к постоянному запоминающему устройству, оперативно-запоминающему устройству, генератору тактовой частоты блока управления, а через устройство ввода к датчику параметров первичной электросети, датчикам ЭДС тока обмотки возбуждения ротора, и соответствующими выходами через устройство вывода к управляющим входам блока ключей и переключателя,
где L индуктивность цепи;
di производная тока этой цепи;
dt интервал времени;
E амплитуда ЭДС источника;
sin синус;

T время. 5. Устройство по п.4, отличающееся тем, что блок ключей выполнен в виде блока ключей встречно параллельных тиристоров. 6. Устройство по п. 4, отличающееся тем, что датчик ЭДС и датчик тока обмотки возбуждения ротора, датчик параметров первичной электросети выполнены в виде аналого-цифровых преобразователей. 7. Устройство по п.4, отличающееся тем, что датчик ЭДС и датчик тока обмотки возбуждения ротора, датчик параметров первичной электросети выполнены в виде преобразователей ток-частота, напряжение частота соответственно. 8. Устройство по п.4, отличающееся тем, что средства связи, соединенные с устройством ввода и устройством вывода, выполнены в виде волоконно оптических линий связи. 9. Устройство по п.4, отличающееся тем, что гасящее устройство выполнено высокоомным.
РИСУНКИ
Рисунок 1NF4A Восстановление действия патента Российской Федерации на изобретение
Номер и год публикации бюллетеня: 21-2004
Извещение опубликовано: 27.07.2004