Способ обзора воздушного пространства радиолокационной станцией с плоским лучом диаграммы направленности антенны
Изобретение относится к области радиолокации и может быть использовано в РЛС для контроля воздушного пространства и управления воздушным движением. В основу изобретения положена техническая задача измерения угла места обнаруженного объекта РЛС с плоским лучом ДНА. Для этого в способе обзора пространства РЛС с плоским лучом ДНА, основанном на последовательном просмотре участка пространства при различных положениях луча и совместной обработке результатов просмотра, положение луча изменяют путем изменения угла наклона его плоскости и азимута или еще и угла места, запоминают угловые положения луча, при которых обнаружены объекты, привязанные к одной дальности, и вычисляют угловые координаты общих участков пространства для этих положений, принимая их за координаты обнаруженных объектов. 3 ил.
Изобретение относится к области радиолокации и может быть использовано в РЛС для контроля воздушного пространства и управления воздушным движением.
Процесс контроля воздушного пространства заключается в его обзоре с помощью РЛС, обнаружении объектов и измерении их координат, а процесс управления в назначении эшелона (высоты) полета, параметров трасс движения объектов через контролируемое пространство и в проверке выполнения объектами назначенных параметров. Для обеспечения этих функций необходимо знание текущих координат объектов азимута, дальности и высоты полета, причем измерение азимута и дальности должно проводиться непрерывно, а высоты эпизодически (при смене эшелона, при входе объекта в зону с интенсивным воздушным движением, с гористым рельефом местности, при обнаружении маневра объекта по высоте и т.д.). В зонах с невысокой плотностью движения эти функции может обеспечивать одна РЛС. Классическим способом обзора воздушного пространства является последовательный обзор РЛС, имеющей игольчатую форму ДНА [1, с. 148; 2, с. 72] При этом дальность определяется по времени запаздывания приема отраженного сигнала, а азимут и угол места, по которому затем вычисляют высоту по известной дальности, определяют по угловому положению луча антенны, при котором обнаружен объект. Игольчатый луч можно реализовать в коротковолновом, например, S-диапазоне [2, с. 16] Недостаток способа состоит в том, что в S-диапазоне трудно обнаруживаются малозаметные объекты, под которыми имеются ввиду как летательные аппараты с малыми линейными размерами, так и объекты, созданные по технологии, обеспечивающей их слабую радиозаметность, например по технологии Stealth (Interavia, 1987, IV, с. 331-333). Этого недостатка лишен способ обзора пространства длинноволновой РЛС, поскольку отражающая поверхность малозаметных объектов, например, в УВЧ-диапазоне в несколько раз выше, чем в S-диапазоне (БИНТИ N 46 (2291), ТАСС 12.11.86). Но в длинноволновом диапазоне трудно получить игольчатую форму луча ДНА (диаграммы направленности антенны), поскольку для этого требуется большая площадь раскрыва антенны (сотни м2). Известен способ обзора пространства РЛС с плоскими лучами ДНА, основанный на поочередном осмотре пространства двумя РЛС, одна из которых имеет плоский луч в вертикальной плоскости (поисковая РЛС кругового обзора), а другая в горизонтальной (РЛС для определения угла места или высотомер) [1, с. 68] С помощью поисковой РЛС обнаруживают объект, определяют дальность до него и азимут, после чего в этом направлении ориентируют ДНА высотомера и просматривают его в пределах углов места, где реально может находиться обнаруженный объект. Недостатки этого способа состоят в следующем: необходимости иметь в пункте контроля воздушным движением две РЛС, неоднозначности определения угла места объекта, если в пределах азимутального размера ДНА высотомера находится несколько объектов на одинаковых дальностях, выпадении из-под контроля при воздействии помех (например, от телецентра) объема пространства, равного суммарному объему двух лучей. Наиболее близким техническим решением к изобретению является способ обзора пространства РЛС с синтезированной апертурой антенны, применяемый в самолетных РЛС для картографирования земной поверхности [2, т. 2, с.337] Принцип работы РЛС с синтезированной апертурой основан на создании эквивалентной апертуры антенны с увеличенной эффективной длиной. Это достигается путем последовательного просмотра участка пространства при различных положениях луча ДНА и совместной обработки результатов просмотра. Поскольку в процессе работы РЛС самолет прямолинейно перемещается относительно земли, то и антенна последовательно перемещается от точки к точке по траектории полета. Если запомнить отраженные сигналы, принимаемые в интервале времени





























Если объект обнаружен при n положениях луча, определяемых координатами






Возникающая при n>2 избыточность позволяет устранить неоднозначность (если в зоне находятся несколько объектов на одной дальности) и уменьшить область пространства воздействия помехи. Так, если, например, в зоне имеется источник помех (фиг.1) с координатами














где



Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3