Устройство для определения окисляемых веществ
Использование: для автоматического измерения окисляемых продуктов, в частности углеродов, лигнинных веществ, сульфитных растворов, химического потребления кислорода, сточных, оборотных и природных вод. Сущность изобретения: устройство для определения окисляемых веществ содержит последовательно установленные емкость для реагента с дозатором, смеситель, индикатор реагента, установленный в сливном трубопроводе, дозатор анализируемой среды, второй индикатор реагента, реакционную ячейку, реле времени и блок индикации. Вход дозатора анализируемой жидкости соединен с магистралью анализируемой среды, а выход с входом смесителя, к второму входу смесителя подключен выход дозатора реагента, вход которого соединен с емкостью реагента, выход смесителя соединен с входом реакционной ячейки, выход которой подключен к сливной магистрали, один из индикаторов реагента установлен в емкости для реагента, а второй - на выходе реакционной ячейки, при этом оба индикатора подсоединены к блоку индикации, а дозаторы - к реле времени. Устройство дополнительно содержит вторую емкость для реагента, второй дозатор реагента, вход которого соединен с дополнительно введенной емкостью, а выход соединен с входом реакционной ячейки, дополнительно содержит третий индикатор реагента, установленный между выходом смесителя и местом подключения дополнительно введенного дозатора. Индикаторы реагента выполнены в виде электродов. Дозаторы выполнены в виде перистальтических насосов. 4 з.п. ф-лы, 1 ил.
Изобретение относится к приборам аналитической химии и предназначено для автоматического измерения содержания окисляемых продуктов, в частности углеродов, лигнинных веществ, сульфитных растворов, химического потребления кислорода (ХПК) сточных, оборотных и природных вод и т.д.
Известно устройство (патент US, N 3725236, кл. G 01 N 27/46, 1973) - электрохимическая установка для определения потребления кислорода, содержащая источник пробы воды, электролизную камеру для получения кислорода, электрод для окисления органики в воде, причем избыток кислорода после окисления определяется дифманометрически. Недостатки: низкая точность определения. Известно также техническое решение (заявка DE, N 2737429, кл. G 01 N 33/18, 1979) способ и устройство для определения химической потребности в кислороде органических веществ, растворенных в воде, в котором в анализируемую пробу вводят кислород и фотометрически определяют результаты окисления. Недостатком является невозможность автоматизации анализа и низкая точность. Наиболее близким заявляемому техническому решению является устройство определения степени химического загрязнения водной текучей среды (патент GB, N 1465080, кл. G 01 N 33/18, 1977). Устройство содержит градуированную емкость с анализируемой средой, источник реагента с дозатором и калориметрический индикатор реагента в смеси с анализируемой средой, причем о степени загрязнения судят по величинам остаточного реагента в смеси. Недостатками данного устройства, выбранного нами за прототип, являются невозможность использования его в качестве встаиваемого в магистраль, а также низкая точность анализа. Задачей, на решение которой направлено изобретение, является расширение функциональных возможностей устройства. Это достигается тем, что устройство для определения окисляемых веществ содержит емкость реагента, дозатор реагента и дозатор анализируемой среды, преимущественно выполненные в виде перистальтических насосов, управляемый электромагнитный клапан, не являющийся необходимым элементом устройства, два индикатора реагента, реакционную ячейку, реле времени и блок индикации, причем дозатор анализируемой жидкости соединен с одним из выходов смесителя и выходом электромагнитного клапана, одним из входов которого подсоединен к магистрали с анализируемой средой, а вторым с емкостью для реагента, емкость с реагентом через дозатор реагента подсоединена к второму смесителю, выход смесителя подсоединен к входу реакционной ячейки, а выход реакционной ячейки подключен к сливной магистрали, один индикатор реагента расположен после реакционной ячейки, второй в емкости реагента, причем индикаторы подсоединены к блоку индикации. В качестве реагента используют окислительно-восстановительную систему (ОВС), например феррицианид-феррицианид калия. Устройство может дополнительно содержать еще одну емкость для второго реагента, подключенную посредством дополнительно установленного второго дозатора реагента к входу реакционной ячейки. В этом случае устройство может содержать третий индикатор реагента, расположенный между смесителем и точкой подключения второй емкости. Сущность изобретения поясняется чертежом, на котором приведена функциональная схема устройства с тремя дозаторами и тремя индикаторами реагента. Предлагаемое устройство содержит три дозатора 1 3, емкость 4 для ОВС и емкость 5 для реагента, двухканальный электромагнитный клапан 6, смесители 7, 20, реакционную ячейку 8, индикаторы реагента 9 -11, усилитель мощности 12, блок индикации 13 и реле времени 14. Дозаторы 1 3 представляют собой перистальтические насосы. Входной канал дозатора 2 сообщен с емкостью 4 для ОВС и с первым впускным каналом 15 электромагнитного клапана 6. Входной канал дозатора 3 сообщен с выпускным каналом электромагнитного клапана 6, второй впускной канал 16 которого сообщен с магистралью 17 сточной воды. Входные каналы дозаторов 2 и 3 соединены соответственно с двумя входами смесителя 7, предназначенного для смешения исследуемого раствора с ОВС. Выход смесителя 7 через трубопровод 18 связан со входом смесителя 20. Выход реакционной ячейки 8 соединен трубопроводом 19 с канализационным стоком. Емкость реагента 5 через дозатор 1 соединена с входом смесителя 20. Индикатор 9 расположен в емкости 4 для ОВС. Индикатор 10 установлен в трубопроводе 19 на выходе реакционной ячейки 8. Индикатор 11 установлен между смесителем 7 и 20. Индикаторы 9 11 электрически соединены через усилитель мощности 12 с блоком индикации 13. Выход реле времени 14, подключенного к сети переменного тока, электрически соединен с обмоткой электромагнитной катушки клапана 6 для управления его работой. Трубопроводы, соединяющие элементы устройства, выполнены из химически неактивных материалов, например из силиконовой резины. Устройство работает следующим образом. Дозаторы 2 и 3 подают под давлением в смеситель 7 соответственно ОВС из емкости 4 и анализируемую сточную воды из магистрали 17, причем подача сточной воды осуществляется через электромагнитный клапан 6, который работает в режиме подачи воды (впускной канал 15 закрыт). Соотношение объемов реакционных жидкостей, подаваемых в смеситель 7, должно быть строго фиксированным. Это соотношение выбирается таким, чтобы разность потенциалов на индикаторах 9 и 10 не превышала предельного значения изменения потенциала используемой ОВС. Например, если в качестве ОВС служит раствор феррицианида и ферроцианида калия, указанная величина составляет 140 мВ, при этом соотношение расходов ОВС и сточной воды лежит в пределах от 10:1 до 1:10. Смесь ОВС и сточной воды после смесителя 7 поступает в реакционную ячейку 8, в которой происходит химическая реакция, и далее сбрасывается в канализационный сток. Сигнал с индикаторов 9 и 10, равный разности потенциалов раствора ОВС и смеси ОВС со сточной водой, подается через усилитель 12 на блок индикации 13, шкала которого предварительно откалибрована в единицах ХПК. Описанные операции осуществляются в устройстве в режиме "измерение". При длительной эксплуатации устройства в реакционной ячейке происходит накопление продуктов реакции взаимодействия ОВС и компонентов анализируемой сточной воды. В результате этого то изменение потенциала (


Формула изобретения
1. Устройство для определения окисляемых веществ, содержащее последовательно установленные емкость для реагента с дозатором, смеситель и индикатор реагента, установленный в сливном трубопроводе, отличающееся тем, что оно дополнительно содержит дозатор анализируемой среды, второй индикатор реагента, реакционную ячейку, реле времени и блок индикации, причем вход дозатора анализируемой среды соединен с магистралью анализируемой среды, а выход с входом смесителя, к второму входу смесителя подключен выход дозатора реагента, вход которого соединен с емкостью реагента, выход смесителя соединен с входом реакционной ячейки, выход которой подключен к сливной магистрали, один из индикаторов реагента установлен в емкости для реагента, а второй на выходе реакционной ячейки, при этом оба индикатора подсоединены к блоку индикации, а дозаторы к реле времени. 2. Устройство по п.1, отличающееся тем, что оно дополнительно содержит вторую емкость для реагента, второй дозатор реагента, вход которого соединен с дополнительно введенной емкостью, а выход соединен с входом реакционной ячейки. 3. Устройство по п.2, отличающееся тем, что оно дополнительно содержит третий индикатор реагента, установленный между выходом смесителя и местом подключения дополнительно введенного дозатора. 4. Устройство по пп. 1 и 3, отличающееся тем, что индикаторы реагента выполнены в виде электродов. 5. Устройство по п.1, отличающееся тем, что дозаторы выполнены в виде перестальтических насосов.РИСУНКИ
Рисунок 1