Способ контроля отклонения положения линии стыка при электронно-лучевой сварке
Изобретение относится к электронно-лучевой сварке конструкционных материалов для контроля отклонения стыка. Сущность изобретения: повышение точности контроля отклонения стыка свариваемых деталей достигается тем, что при проведении сканирования электронным пучком линии стыка и оси неотклоненного электронно-эмиссионного тока, совпадение линии стыка и оси неотклоненного электронного пучка определяют по экстремуму амплитуды колебаний одной из составляющих спектра вторично-эмиссионного тока. При этом совпадение линии стыка и оси неотклоненного электронного пучка определяют по минимуму амплитуды составляющей спектра колебаний вторично-эмиссионного тока с частотой, равной частоте сканирования стыка электронным пучком и/или по максимуму амплитуды колебаний составляющей спектра с частотой, равной удвоенной частоте сканирования стыка электронным пучком. 2 ил.
Изобретение относится к электронно-лучевой сварки и может быть использовано при электронно-лучевой сварке конструкционных материалов для контроля отклонений положения линии стыка.
Известен способ контроля отклонения положения линии стыка при электронно-лучевой сварке, при котором производят сканирование электронным пучком линии стыка, регистрируют вторично-эмиссионный ток с введением задержки измерения значения этого тока и по временному положению импульса вторично-эмиссионного тока в цикле сканирования определяют величину отклонения электронного пучка от стыка [1] Недостатком известного способа является невысокая точность контроля отклонения положения линии стыка, что связано с погрешностями при определении временного положения импульса вторично-эмиссионного тока в цикле сканирования. Наиболее близким к описываемым по технической сущности и достигаемому эффекту является способ контроля отклонений положения линии стыка, при котором производят сканирование электронным пучком линии стыка, регистрируют вторично-эмиссионный ток и анализируют спектр колебаний вторично-эмиссионного тока, при этом совпадение линии стыка и оси неотклоненного электронного пучка определяют по экстремуму амплитуды составляющей спектра с частотой, равной удвоенной частоте сканирования пучка [2] Недостатком способа является невысокая точность контроля отклонения положения линии стыка, связанная с отсутствием контроля минимума амплитуды составляющей спектра вторично-эмиссионного тока с частотой, равной частоте сканирования стыка электронным пучком. Задача изобретения повышение точности контроля отклонения положения линии стыка при электронно-лучевой сварке. Это достигается тем, что в способе контроля отклонения положения линии стыка при электронно-лучевой сварке, при котором происходит сканирование электронным пучком линии стыка, регистрируют вторично-эмиссионный ток, анализируют спектр колебаний вторично-эмиссионного тока и совпадение линии стыка и оси неотклоненного электронного пучка, определяют по экстремуму амплитуды колебаний составляющих спектра вторично-эмиссионного тока, совпадение линии стыка и оси неотклоненного электронного пучка определяют по наличию минимума амплитуды составляющей спектра колебаний вторично-эмиссионного тока с частотой, равной частоте сканирования стыка электронным пучком или по одновременному наличию максимума амплитуды колебаний составляющей спектра с частотой, равной удвоенной частоте сканирования стыка электронным пучком и минимума амплитуды составляющей спектра вторично-эмиссионного тока с частотой, равной частоте сканирования стыка электронным пучком. Отличительным признаками предлагаемого способа электронно-лучевой сварки является то, что для наведения электронного пучка на стык используется значения амплитуд колебаний составляющих спектра вторично-эмиссионного тока с частотой, равной частоте сканирования электронным пучком линии стыка, и с частотой, равной удвоенной частоте сканирования стыка пучком. Выделение составляющих спектра колебаний вторично-эмиссионного тока с частотой, кратной частоте сканирования электронного пучка, и измерение их амплитуды эквивалентно Фурье-анализу вторично-эмиссионого сигнала. При этом достигается повышение точности контроля отклонения стыка свариваемых деталей при электронно-лучевой сварке, так как Фурье-анализ вторично-эмиссионного сигнала является высоко информативным для определения положения оси неотклоненного электронного пучка относительно линии стыка. На фиг. 1 приведена блок-схема устройства для осуществления способа; на фиг.2 временные диаграммы сканирования электронного пучка относительно стыка свариваемых деталей и вторично-эмиссионных сигналов. Способ реализуется следующим образом. В установке для электронно-лучевой сварки (фиг.1) на отклоняющую систему 2 электронной пушки 1 через усилитель тока отклонения 8 подается сигнал с генератора колебаний 7, что обеспечивает сканирование электронным пучком стыка свариваемых деталей 11. Импульсы вторично-эмиссионного сигнала от стыка регистрируются коллектором электронов 3, который включен в электрическую цепь, содержащую резистор нагрузки 4. Сигнал с резистора нагрузки 4 поступает на двухканальный селективный усилитель 5, который выделяет и усиливает составляющую с частотой, равной частоте сканирования электронного пучка, и составляющую с частотой, равной удвоенной частоте сканирования электронного пучка. При сканировании электронным пучком стыка свариваемых деталей импульсы вторично-эмиссионного тока возникают вследствие различия значений коэффициента отражения электронов от металла на поверхности деталей и стыке (фиг.2). Амплитуда импульсов на выходе селективного усилителя 5 в канале составляющей с частотой, равной частоте сканирования электронного пучка, является при Фурье-анализе амплитудой первой гармоники колебаний (фиг.2,а) и равна




При совпадении линии стыка свариваемых деталей и оси неотклоненного электронного пучка (фиг. 2, б)


Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2