Измерительный преобразователь гармонических составляющих тока и напряжения
Изобретение относится к электроизмерительной технике и позволяет расширить функциональные возможности и повысить точность измерения высших гармонических составляющих тока и напряжения. Измеряемое напряжение фильтруется и по отфильтрованному сигналу с помощью умножителя частоты 13, делителя частоты 19 и формирователей импульсов записи 12 и сброса 14 формируются тактовые импульсы и интервал измерения, равный периоду основной гармоники, а с помощью первого 6 и второго 7 функциональных преобразователей - опорные синусоидальный и косинусоидальный сигналы, имеющие частоту измеряемой гармоники. Измерение ортогональных составляющих гармоник тока и напряжения осуществляется в базисе опорных гармонических сигналов соответствующей частоты путем цифрового интегрирования произведений производных тока и напряжения на опорные синусоидальный и косинусоидальный сигналы с помощью четырех реверсивных счетчиков 30-33, содержимое которых в конце каждого периода измерения переписывается в буферные регистры 34-37, из которых вводится в микроЭВМ 38. Вычисление значений гармоник тока и напряжения, угла сдвига фаз между ними, активной, реактивной и полной мощностей производится с помощью микроЭВМ. 3 ил.
Изобретение относится к электроизмерительной технике и предназначено для использования в информационно-измерительных системах анализа электромагнитной совместимости оборудования, а также в автоматизированных системах для научных исследований электроэнергетических процессов в электротехнических устройствах и комплексах с полупроводниковыми преобразователями.
Известны измерительные преобразователи гармонических составляющих тока и напряжения, содержащие первичный преобразователь напряжения, вход которого соединен с потенциальной входной шиной устройства, первичный преобразователь тока, вход которого соединен с токовой входной шиной устройства, последовательно соединенные фильтр нижних частот, умножитель частоты и делитель частоты, вход фильтра нижних частот соединен с первичным преобразователем напряжения, выход делителя частоты подключен к объединенным входам первого и второго Т-триггеров, информационные входы функциональных преобразователей вида |sinx| и |cosx| объединены и соединены с выходом умножителя частоты, первый и второй блоки перемножения, первые входы которых объединены и подключены к первому преобразователю тока, вторые входы подключены соответственно к выходам функциональных преобразователей вида 2sinx| и |cosx| а выходы соединены соответственно с входами первого и второго преобразователей напряжение-частота синхронного типа, управляющие входы которых объединены и подключены к выходу умножителя частоты, первый, второй, третий и четвертый двухвходовые логические элементы И, первые входы первого и второго двухвходовых логических элементов И подключены соответственно к прямому и инверсному выходам первого Т-триггера, а вторые объединены и подключены к выходу первого преобразователя напряжение-частота синхронного типа, первые входы третьего и четвертого двухвходовых логических элементов И подключены соответственно к прямому и инверсному выходам второго Т-триггера, а вторые входы объединены и подключены к выходу второго преобразователя напряжение-частота синхронного типа, первый и второй реверсивные счетчики, суммирующие входы которых соединены соответственно с выходами первого и третьего двухвходовых логических элементов И, вычитающие входы подключены к выходам соответственно второго и четвертого двухвходовых логических элементов И, последовательно соединены формирователь импульсов записи и формирователь импульсов сброса, вход формирователя импульсов записи подключен к прямому выходу первого Т-триггера, выход формирователя импульсов сброса подключен к объединенным R-входам первого и второго реверсивных счетчиков, первого и второго буферных регистров, информационные входы которых подключены к выходам соответственно первого и второго реверсивных счетчиков, синхровходы подключены к выходу формирователя импульсов записи, а выходы являются выходами устройства, управляющие входы функциональных преобразователей вида 2sinx| и |cosx| объединены и подключены через пороговый элемент к выходу первичного преобразователя напряжения (патент РФ N 1485141, 1989, кл. G 01 R 19/06; Авт.св. СССР N 1397843, 1986, кл. G 01 R 19/06). В таких устройствах осуществляется измерение синфазной и квадратурной составляющих основной гармоники тока цифровым интегрированием произведения измеряемого тока на квазигармонический сигнал 2sinx| для синфазной составляющей и цифровым интегрированием произведения измеряемого тока на квазигармонический сигнал 2cosx| для квадратурной составляющей. При этом усреднение производится за период измеряемого тока, а формирование опорных квазигармонических сигналов выполняется с помощью функциональных преобразователей вида 2sinx| и |cosx|, управление которыми производится выходными импульсами порогового элемента, подключенного к первичному преобразователю напряжения. В известном измерительном преобразователе осуществляется только одновременное измерение синфазной и квадратурной составляющих одной гармоники тока, номер которой определяется жестко программами, хранящимися в ПЗУ. При этом невозможно измерение нескольких гармоник тока, гармоник напряжения и фазовых сдвигов гармоник тока и напряжения. Кроме того, поскольку в системах электроснабжения амплитуды гармоник уменьшаются с ростом частоты, то при измерении высших гармонических уменьшается точность из-за увеличения относительной погрешности квантования. Таким образом, недостатки известных измерительных преобразователей - ограниченные функциональные возможности и низкая точность измерения высших гармонических составляющих. Из известных устройств наиболее близким по достигаемому результату к предлагаемому техническому решению является измерительный преобразователь гармонических составляющих тока и напряжения, содержащий первичный преобразователь напряжения, вход которого соединен с потенциальной входной шиной устройства, а выход через последовательно соединенные фильтр нижних частот, умножитель частоты и делитель частоты соединен с объединенными входами первого и второго Т-триггеров и управляющими входами функционального преобразователя вида 2sinx| и функционального преобразователя вида 2cosx|, первичный преобразователь тока, вход которого соединен с токовой входной шиной устройства, четыре блока перемножения, первые входы первого и второго из которых объединены, вторые входы подключены соответственно к выходам функциональных преобразователей вида 2sinx| и |cosx|, а выходы подсоединены к информационным входам соответственно первого и второго преобразователей напряжение-частота синхронного типа, первые входы третьего и четвертого блоков перемножения объединены, вторые входы третьего и четвертого блоков перемножения соединены с выходами соответственно функционального преобразователя вида 2sinx| и функционального преобразователя вида 2cosx|, а выходы подключены к информационным входам соответственно третьего и четвертого преобразователей напряжение-частота синхронного типа, синхронизирующие входы первого, второго, третьего и четвертого преобразователей напряжение-частота синхронного типа и информационные входы функциональных преобразователей вида 2sinx| и |cosx| объединены и подключены к выходу умножителя частоты, а выходы подключены к попарно объединенным вторым входам соответственно первого и второго, третьего и четвертого, пятого и шестого, седьмого и восьмого двухвходовых элементов И, первые выходы первого и пятого элементов И объединены и подключены к прямому выходу первого Т-триггера, инверсный выход которого соединен с объединенными первыми входами второго и шестого элементов И, первые входы третьего и седьмого элементов И объединены и подключены к прямому выходу второго Т-триггера, инверсный выход которого соединен с объединенными первыми входами четвертого и восьмого элементов И, выходы первого и второго, третьего и четвертого, пятого и шестого, седьмого и восьмого элементов И подключены попарно к суммирующим и вычитающим входам соответственно первого, второго, третьего и четвертого реверсивных счетчиков, R-входы которых объединены и подключены к выходу формирователя импульсов сброса, а выходы подключены к информационным входам соответственно первого, второго, третьего и четвертого буферных регистров, C-входы которых объединены и подключены к выходу формирователя импульсов записи, включенного между прямым выходом первого T-триггера и входом формирователя импульсов сброса, а выходы подключены к параллельным портам блока вычисления параметров гармонических составляющих напряжения и тока, вход запроса прерывания на обслуживание измерительного преобразователя подключен к выходу формирователя импульсов сброса, выход первичного преобразователя тока подключен к объединенным первым входам первого и второго блоков перемножения, выход первичного преобразователя напряжения подключен к объединенным первым входам третьего и четвертого блоков перемножения (патент РФ N 2003113, 1993, кл. G 01 R 19/06). В известном устройстве измеряемое напряжение фильтруется и по отфильтрованному сигналу с помощью умножителя частоты и делителя частоты формируются тактовые импульсы и интервал измерения, равный периоду напряжения, а с помощью первого и второго функциональных преобразователей опорные синусоидальный и косинусоидальный сигналы, синхронизированные с периодом измерения. Измерение ортогональных составляющих гармоник тока и напряжения осуществляется в базисе опорных гармонических сигналов путем цифрового интегрирования произведений тока и напряжения на опорные синусоидальный и косинусоидальный сигналы с помощью четырех реверсивных счетчиков, содержимое которых в конце каждого периода измерения переписывается в буферные регистры, из которых информация вводится в блок вычисления параметров гармонических составляющих напряжения и тока, реализованный с помощью микроЭВМ. Вычисление параметров гармоники напряжения, синфазной и квадратурной составляющих гармоники тока относительно гармоники напряжения, активной и реактивной мощностей гармоники, угла сдвига фазы тока относительно напряжения и косинуса угла сдвига фазы производится с помощью микроЭВМ за каждый период. В известном измерительном преобразователе осуществляется одновременное измерение только одной гармоники тока и соответствующий ей гармоники напряжения, номер которых определяется программами, хранящимися в ПЗУ. При этом невозможно измерение других, а также нескольких гармоник тока и напряжения. Кроме того, поскольку в системах электроснабжения обычно амплитуды гармоник уменьшаются с ростом частоты (Аррилага Д. Брэдли Д. Воджер П. Гармоники в электрических системах /Пер. с англ. М. Энергоатомиздат, 1990, с. 160, рис. 6, 25), то при измерении высших гармонических составляющих уменьшается точность из-за увеличения относительной погрешности квантования






где UMm,



m номер гармоники,
поступает на вход первичного преобразователя 1 напряжения, а с его выхода подается на фильтр нижних частот 5, который подавляет высшие гармоники напряжения и формирует сигнал
u5= Uмsin(


где UM амплитуда гармонического сигнала на выходе фильтра нижних частот 5,


где k2 коэффициент передачи дифференцирующего устройства 2. Измеряемый несинусоидальный ток

где IMm амплитуда m-й гармоники тока;

преобразуется первичным преобразователем тока 3 в напряжение
u3 K3i,
где k3 коэффициент передачи первичного преобразователя тока 3. Сигнал u3 преобразуется вторым дифференцирующим устройством 4 в напряжение

где k4 коэффициент передачи второго дифференцирующего устройства. Код с одного из портов блока вычисления параметров гармонических составляющих напряжения и тока 38 действует на управляющем входе умножителя частоты 13, в результате чего его коэффициент передачи установлен равным
k13 m

где n коэффициент. Сигнал с выхода фильтра нижних частот 5 поступает на вход умножителя 13 частоты на m

f13 mnf mn/T
где Т 1/f период сети. Импульсы u13 с выхода умножителя частоты 13 поступают на делитель 19 частоты на n/2, на выходе которого формируются импульсы u19 с частотой f19 2mf13/n, которая равна удвоенной частоте измеряемой гармоники. Импульсы u19 поступают одновременно на входе T-триггера 20 с установкой по положительному фронту и T-триггера 21 с установкой по отрицательному фронту. В результате на выходе первого T-триггера 20 формируется последовательность импульсов u20, имеющая частоту измеряемой гармоники, но сдвинутая по фазе относительно соответствующей гармоники напряжения на угол



где Ua амплитудное значение сигналов. Квазигармонические сигналы






U(2mn), U(2mn)*, I(4mn), I(4mn)* - проекции векторов производных m-ых гармоник напряжения и тока на оси ортогонального базиса. Выделение проекции производной от m-й гармоники несинусоидального тока на ось sinx ортогонального базиса (u6, u7) осуществляется следующим образом. Первый блок перемножения 8 выполняет умножение сигнала u4, пропорционального производной от тока, на опорный квазигармонический сигнал u6. В результате на выходе блока перемножения 8 формируется напряжение

где k8 коэффициент передачи первого блока перемножения 8. Сигнал u8 поступает на вход первого преобразователя напряжение-частота 15 и преобразуется им в импульсы u15, следующие с частотой

где k15 коэффициент передачи первого преобразователя напряжение-частота 15;
Uсм напряжение смещения преобразователя напряжение-частота 15. Выходные импульсы первого преобразователя напряжение-частота 15 поступают на вторые входы первого и второго логических элементов И 22 и 23, первые входы которых подключены соответственно к прямому и инверсному выходам первого T-триггера 20, а выходы соединены с суммирующим и вычитающим входам первого реверсивного счетчика 30. В начале каждого периода измерения (момент t0) первый реверсивный счетчик 30 выходным импульсом формирователя импульсов сброса 14 устанавливается в нулевое состояние N30 0. Далее импульсы u15 в зависимости от состояния триггера 20 поступают на суммирующий и вычитающий входы первого реверсивного счетчика. При этом в интервалах времени длительностью

при которых sin(m









где kп.T 0,5 k3k4k8k15nUa - коэффициент передачи измерительного преобразователя для проекции произведений m-й гармоники, тока на ось sinx базиса (u6, u7). Знак числа N30 определяется значением старшего разряда двоичного реверсивного счетчика 30. Положительному значению N30 соответствует 0 в старшем разряде, а отрицательному значению 1. Выделение проекции производной m-й гармоники тока на ось cosx ортогонального базиса (u6, u7) осуществляется аналогичным образом. Второй блок перемножения 9 выполняет умножение сигнала u4 на опорный квазигармонический сигнал u7. В результате на выходе блока перемножения 9 формируется сигнал

где k9 коэффициент передачи второго блока перемножения 9. Сигнал u9 поступает на вход второго преобразователя напряжение-частота 16 и преобразуется им в импульсы u16, следующие с частотой

где k16 коэффициент передачи второго преобразователя напряжение-частота 16. Выходные импульсы второго преобразователя напряжение-частота 16 поступают через логические элементы И 24 и 25 соответственно на суммирующий и вычитающий входы второго реверсивного счетчика 31. Этот счетчик устанавливается в начале каждого периода измерения (момент t0) в нулевое состояние, а в конце периода измерения (момент t0+T) в нем в двоично-дополнительном коде записывается число

где k*п.Т= 0,5k3k4k9k16nUa - коэффициент передачи измерительного преобразователя для проекции производной m-й гармоники тока на ось cosx базиса (u6, u7). Выделение проекций m-й гармоники напряжения на оси базиса (u6, u7) осуществляется аналогичным образом с помощью третьего 10 и четвертого 11 блоков перемножения, третьего 17 и четвертого 18 преобразователей напряжение-частота, пятого 26, шестого 27, седьмого 28 и восьмого 29 элементов И, третьего 32 и четвертого 33 реверсивных счетчиков. В соответствии с логикой работы устройства в конце периода измерения в третьем и четвертом реверсивных счетчиках 32 и 33 записываются числа соответственно

где kп.н 0,5 k1k2k11k16nUa,
k*п.н. 0,5 k1k2k11k18nUa коэффициенты передачи измерительного преобразователя для проекций m-й гармоники напряжения на оси sinx и cosx ортогонального базиса (u6, u7). В конце каждого периода измерения (момент t0+T) выходным импульсом формирователя импульсов записи 12 производится запись содержимых реверсивных счетчиков 30-31 в буферные регистры 34 -- 37. Затем выходным импульсом формирователя импульсов сброса 14 производится установка в нулевое состояние реверсивных счетчиков 30-33. Далее процесс повторяется. При этом в течение последующего периода измерение в буферных регистрах 34-37 хранятся числа N34 N30, N35 N31, N36 N32, N37 N33. По сигналу с выхода формирователя импульсов сброса 14, поступающему на вход INT блока вычисления параметров гармонических составляющих напряжения и тока 38 (вход запроса прерывания на обслуживание измерительного преобразователя), в микроЭВМ 38 происходит вызов подпрограммы, по которой осуществляется считывание кодов с буферных регистров 34-37. Далее производится вычисление параметров m-ых гармоник несинусоидальных напряжения и тока по следующим формулам:
амплитудные значения m-ых гармоник напряжения и тока

действующие значения m-ых гармоник напряжения и тока

угол сдвига фаз между m-ми гармониками напряжения и тока



амплитудное и действующее значения синфазной составляющей m-й гармоники тока

амплитудное и действующее значения квадратурной составляющей m-й гармоники тока

активная мощность m-й гармоники
Pm=UmImcos

реактивная мощность m-й гармоники
Qm=UmImsin

полная мощность m-й гармоники
Sm=UmIm
Результаты вычислений выводятся на дисплей или алфавитно-цифровое печатающее устройство. Для измерения параметров другой гармоники на выходе блока вычисления параметров гармонических составляющих напряжения и тока формирует код, который устанавливает новое значение коэффициента передачи умножителя частоты 13. Процедура измерений при этом аналогична рассмотренной. Таким образом, измерение параметров гармоник тока и напряжения в предлагаемом устройстве осуществляется путем разложения производных тока и напряжения на ортогональные составляющие в базисе опорных гармонических сигналов (sinx, cosx) с последующим вычислением всех параметров с помощью блока вычисления параметров гармонических составляющих напряжения и тока по значениям измеренных составляющих. Дифференцирование сигналов, пропорциональных току и напряжению, обеспечивает усиление высших гармоник при сохранении (или снижении) уровня основной гармоники. Так как в предлагаемом устройстве осуществляется аналого-цифровое преобразование производных от гармоник, то погрешность квантования при измерении m-й гармоники равна

т. е. в m раз меньше, чем


т.е. на порядок меньше, чем в известном устройстве. При этом предлагаемое техническое решение позволяет измерять как основную, так и высшие гармоники тока и напряжения, а также выполнять последовательно во времени измерения разных гармоник по программе с помощью микроЭВМ. Следовательно, устройство имеет расширенные функциональные возможности. Другими важными достоинствами измерительного преобразователя являются:
инвариантность результатов измерений относительно изменений частоты питающей сети, что следует из уравнений (2)-(5);
высокое быстродействие, время измерения равно периоду напряжения питающей сети;
представление данных в цифровом коде и обработка данных с помощью микроЭВМ. Использование предлагаемого измерительного преобразователя гармонических составляющих тока и напряжения в электротехнических устройствах и энергетических системах позволит повысить точность учета электроэнергии и качество функционирования автоматических систем регулирования режимов работы электрооборудования.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3