Зеркало с пространственно неоднородным комплексным коэффициентом отражения
Использование: изобретение относится к области прикладной оптики и может быть использовано в лазерной технике и оптических системах формирования изображения. Сущность: устройство направлено на решение задачи создания зеркала с управляемым в реальном времени комплексным коэффициентом отражения. Устройство содержит две полупрозрачные пластины, по крайней мере одна из которых соединена с устройством, осуществляющим деформацию поверхности пластины. Принцип действия устройства основан на зависимости коэффициента отражения от расстояния между пластинами и их формы. Данное устройство в отличие от известных позволяет управлять в реальном времени фазой и амплитудой отраженного пучка независимо друг от друга. 5 ил.
Изобретение относится к области прикладной оптики и может быть использовано в лазерной технике и оптических системах формирования изображения, где требуется управление в реальном времени амплитудно-фазовыми характеристиками формируемого излучения или статическая оптимизация параметров излучения. В лазерных системах зеркало с пространственно неоднородным комплексным коэффициентом отражения может быть использовано как зеркало лазерного резонатора, которое позволяет оптимизировать мощность лазерного излучения, минимизировать расходимость излучения. В оптических системах формирования изображения предлагаемое устройство может быть использовано как амплитудно-фазовый пространственный фильтр, к примеру с целью повышения контраста изображения, формируемого астрономическим телескопом.
Известно зеркало в виде металлической мембраны [1] толщиной 0,5-1,5 мкм, помещенной между прозрачным электродом, выполненным на поверхности покровной стеклянной пластины (на него подается напряжение смещения), и группой дискретных электродов, на которые подаются управляющие сигналы. Недостатком данного зеркала являются сложность конструкции, требующая использования при изготовлении зеркала уникальных технологических операций, и невозможность использования зеркала в лазерных системах большой мощности, так как толщина наносимых на зеркала многослойных диэлектрических отражающих покрытий превышает толщину мембраны, что ухудшает управляемость зеркала. Кроме того, данное зеркало позволяет управлять только фазой светового пучка. Известно зеркало с заданным амплитудно-фазовым распределением комплексного коэффициента отражения [2] представляющее собой кварцевую подложку с многослойным диэлектрическим покрытием. Покрытие формируют путем нанесения отдельных интерференционных слоев с толщиной, зависящей от радиальной координаты по заданному закону. Основными недостатками данного зеркала являются сложность технологии изготовления и невозможность изменения комплексного коэффициента отражения непосредственно в процессе использования в оптической системе. Известно зеркало в виде интерферометра Фабри-Перо, между пластинами которого размещена круглая диафрагма и одна из пластин установлена на пьезоприводе, позволяющем изменять базу интерферометра [3] С помощью данного зеркала реализуется ступенчатый профиль коэффициента отражения коэффициент отражения вне апертуры диафрагмы равен коэффициенту отражения зеркала интерферометра, а в пределах отверстия диафрагмы коэффициент отражения определяется аппартной функцией интерферометра. К недостаткам данного зеркала следует отнести существенную ограниченность класса функций, описывающих комплексный коэффициент отражения и доступных для реализации (а именно ступенчатый профиль амплитудной и фазовой характеристик). Кроме того, амплитуда и фаза коэффициента отражения, формируемые рассматриваемым устройством, оказываются связанными между собой, что не позволяет в общем случае реализовать коэффициент отражения с заданным амплитудно-фазовым распределением. Еще один недостаток рассматриваемого зеркала невозможность использования в мощных лазерных системах из-за малой лучевой стойкости диафрагмы (вследствие тепловых краевых эффектов). Представленное зеркало наиболее близко к заявляемому и выбрано в качестве прототипа. Предлагаемое устройство направлено на решение задачи создания зеркала с управляемым в реальном времени пространственно неоднородным комплексным коэффициентом отражения, что дает возможность формировать отраженное излучение с управляемым амплитудно-фазовым распределением. Технический результат от применения предлагаемого зеркала как лазерного резонатора состоит в увеличении мощности лазерного излучения и в уменьшении его расходимости. При использовании зеркала в оптических системах формирования изображения достигается увеличение контраста изображения посредством оптимизации амплитудно-частотной характеристики оптической системы. Эффективность применения рассматриваемого зеркала существенно выше, чем прототипа, что связано с а) расширением класса реализуемых корректором пространственно неоднородных комплексных функций коэффициента отражения; б) возможностью независимого формирования заданных фазового и амплитудного распределений комплексного коэффициента отражения. Использование в лазерных резонаторах зеркал с пространственно неоднородным комплексным коэффициентом отражения позволяет существенно повысить селективность резонатора и таким образом уменьшить расходимость лазерного пучка. Заявляемое зеркало является универсальным, так как позволяет оптимизировать параметры зеркал непосредственно в процессе работы лазера, а не подбирать зеркало методом проб и ошибок, поскольку предварительный расчет параметров неуправляемого зеркала является, как правило, приближенным вследствие сложности лазера как системы и отсутствия точной теоретической модели. Аналогичные преимущества рассматриваемого зеркала проявляются и при использовании его в оптических системах формирования изображения. Предлагаемое зеркало позволяет реализовать как поисковый, так и беспоисковый алгоритмы управления не только фазой отраженного пучка, но и его амплитудой. Преимущества заявляемого устройства в сравнении с прототипом обусловлены следующим существенным признаком наличием в зеркале устройства для деформации пластин. Технический результат достигается посредством использования устройства, обеспечивающего деформацию по требуемому закону поверхности по крайне мере одной из двух пластин и/или изменение оптической длины промежутка между пластинами. Среди известных из научной и технической литературы решений не обнаружено зеркал на основе двух полупрозрачных отражающих деформированных заданным образом пластин с переменным (по пространственным координатам в плоскости зеркал) расстоянием между ними, что свидетельствует о соответствии изобретения критерию новизны. Работоспособность заявляемого устройства исследована с помощью теоретического подхода, основанного на решении обратной оптической задачи формирования заданного комплексного коэффициента отражения системой из двух полупрозрачных пластин. В рамках разработанной теоретической модели обоснована достаточность существенных признаков для достижения технической цели, решаемой заявляемым устройством. При оценке значимости изобретения для промышленного применения необходимо отметить следующие факторы: а) заявляемое устройство может использоваться не только в разрабатываемых лазерных системах и системах формирования изображения, но и в уже существующих; в последнем случае не требуется модернизация системы в целом положительный эффект достигается путем замены одного из зеркал на заявляемое зеркало; б) производство предлагаемого устройства в сравнении с аналогами не требует применения тонких технологий (нанесение на подложку нескольких пространственно неоднородно распределенных слоев интерференционных покрытий); по оценкам, стоимость промышленного изготовления зеркала с пространственно неоднородным коэффициентом отражения в 2-5 раз ниже, чем изготовление аналогов. На фиг. 1 изображена схема зеркала; на фиг. 2 -пример конструкции одного из вариантов зеркала; на фиг. 3 амплитуда и фаза коэффициента отражения; на фиг. 4 схема зеркала с комплексным коэффициентом отражения, в виде двумерной периодической решетки; на фиг. 5 амплитуда комплексного коэффициента отражения. На фиг. 1 схематично показан принцип работы зеркала. Зеркало состоит из двух полупрозрачных отражающих пластин 1 и 2 (фиг. 1). Пусть приходящая волна U падает на зеркало со стороны пластины 1, тогда амплитудно-фазовое распределение поля в отраженной волне Ur будет функцией, зависящей от формы первой по ходу луча пластины, расстояния между пластинами, и определяется выражением: Ur = UR(r,




n показатель преломления среды между пластинами;
d0 длина зазора между опорными плоскостями зеркал интерферометра;




k=2



где r радиальная координата,
P нагрузка,
E модуль Юнга,

a, b, h см. фиг. 2. Пластина 2 имеет плоскую поверхность d2(r,


где







Формула изобретения

причем форма поверхности первой полупрозрачной пластины по ходу падающего на зеркало луча задана выражением

а форма поверхности второй полупрозрачной пластины по ходу падающего на зеркало луча задана выражением







где r,


k волновое число;
n показатель преломления среды между пластинами;
R1, R2 амплитудные коэффициенты отражения для первой и второй пластин по ходу луча соответственно;
Т1, Т2 амплитудные коэффициенты пропускания для первой и второй пластин по ходу луча соответственно;

РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5