Двухвходовая электрическая машина
Использование: усилители механической мощности в электромашиностроении. Сущность изобретения: шихтованный якорь со щеточно-коллекторным аппаратом машины постоянного тока помещен концентрически в кольцевой шихтованный магнитопровод ротора с короткозамкнутой обмоткой типа беличьей клетки, впрессованного в корпус, имеющего возможность вращения вокруг шихтованного якоря. Технический результат: одновременное использование механической (усиливаемой) энергии, например, ветротурбины, и электрической (усиливающей) - от фотоэлектрических преобразователей в системе комплексного использования нетрадиционных возобновляемых источников энергии. 4 ил.
Изобретение относится к электромашиностроению и может быть использовано в качестве усилителя механической мощности, подаваемой на один (механический) вход машины, за счет мощности, одновременно подаваемой на другой (электрический) ее вход (откуда и название двухвходовая).
Известна двухвходовая электрическая машина, работающая в режиме электромагнитной муфты скольжения, содержащая ведущий вал с полумуфтой (например, с короткозамкнутой обмоткой), ведомый вал, например, с системой возбуждения (индуктором) и токоподводящее устройство (Т. А. Щетинина. Электромагнитные муфты скольжения. М. Энергоатомиздат, 1985 с. 8-10). Эта машина имеет механический вход с вала приводного двигателя на ведущий вал, электрический вход, сигнал которого поступает через контактные кольца на индуктор, обеспечивающий электромагнитную связь между ведущей и ведомой частями машины (муфты), посредством которой и передается вращающий момент. При этом величиной электрического сигнала обеспечивается управляемость муфтой, т. е. выходной скоростью ее вращения. Однако такая машина, являясь по принципу своей работы и назначению передатчиком определенной части входной механической мощности, принципиально не может работать в режиме усилителя мощности, поскольку выходная скорость вращения всегда меньше входной при равных моментах на ведущем и ведомом валах. Разность между входной и выходной мощностями, называемая мощностью скольжения, гасится в самой машине (муфте) и тем больше, чем больше скольжение муфты. Прототипом данного изобретения являются обычные электрические машины постоянного и переменного тока электромагнитного типа, включая электромашинные усилители (ЭМУ), которые, работая в режиме генератора, усиливают электрическую мощность, подаваемую на один вход (обмотку возбуждения) машины, за счет механической мощности, подаваемой на другой (второй) вход на вал машины (Копылов И. П. Электрические машины. М. Энергоатомиздат, 1986, 360 с.) Однако все разнообразие машин, составляющих прототип, позволяет усиливать только электрическую мощность за счет механической и принципиально не может усиливать механическую мощность за счет электрической. В то же время, в ряде случаев, например при комплексном использовании нетрадиционных источников энергии (например энергии ветра и солнца одновременно), в различного рода механических усилителях самолетов, автомобилей, тракторов и т. д. бывает необходимость в усилителях именно механической мощности за счет электрической мощности. Данное изобретение решает эту задачу. Это достигается тем, что шихтованный якорь с обмоткой и щеточно-коллекторным аппаратом машины постоянного тока помещен концентрически в кольцевой шихтованный магнитопровод ротора с короткозамкнутой обмоткой типа беличьей клетки, впрессованного в корпус и имеющего возможность вращения вокруг шихтованного якоря. Двухвходовая электрическая машина (фиг. 1) содержит якорь 1 машины постоянного тока общепринятой конструкции с обмоткой 2, уложенной в пазах 3, коллектора 4 с щетками 5, к которым подключены провода 6, кольцевой шихтованный магнитопровод ротора 7, в пазах которого размещены стержни короткозамкнутой обмотки 8, снабженной короткозамыкающими кольцами 9, корпус 10, в который впрессован кольцевой магнитопровод, подшипниковые щиты 11 с подшипниками 12 и 13 и вал 14. Двухвходовая машина работает следующим образом. При подаче постоянного тока на зажимы питающих проводников 6 через щетки 5 и коллектор 4 обмотка 2 якоря 1 обтекается током. При этом создается магнитный поток, известный под названием потока реакции якоря. При неподвижном якоре и при его вращении ось магнитного потока неподвижна и совпадает с осью щеток. Короткозамкнутая обмотка 8 кольцевого ротора 7, находясь в этом неподвижном поле, в работу не вступает и на якоре 1 никакого электромагнитного момента не создается. Для вращения ротора 7 вместе с корпусом 10 в последнем могут быть нарезаны зубья для обеспечения зубчатого зацепления с первичным источником механической энергии (например, ветротурбиной), а к зажимам может быть подведена электрическая энергия (например, от фотоэлектрических преобразователей). Если же корпус 10 вместе с ротором 7 и обмоткой 8 придет во вращение под действием приложенного извне момента, то в обмотке 8, как в короткозамкнутой обмотке обычного асинхронного элеткродвигателя, индуктируется ЭДС и протекает ток, создающий электромагнитный момент, приложенный к кольцевому магнитопроводу, направленный встречно приложенному извне моменту. Такой же величины, но направленный в противоположную сторону момент действует на якорь 1. Вращаясь под действием этого момента с частотой вращения, большей, чем частота вращения корпуса 10 и кольцевого магнитопровода 7, якорь 1 приводит во вращение производственный механизм, состыкованный с ним. Частота вращения корпуса (ротора)






































где Mэр электромагнитный момент ротора. Таким образом, в рассматриваемом режиме (представляющем только теоретический интерес, необходимый для методичного изложения принципа работы) предлагаемая машина является, по существу, обращенной асинхронной машиной, вращающееся поле которой обусловлено вращением щеток. Можно сказать, что в заданном режиме ее можно использовать как электромагнитную муфту, в которой ведущей частью является щеточный аппарат, а ведомой ротор, скорость вращения которого














щетки остановились, что облегчает подвод энергии к ним;
якорь, ранее неподвижный, вращается со скоростью (-

ротор вращается со скоростью (-




где Mэа электромагнитный момент якоря. К ротору же теперь извне подводится механическая энергия
PMXp= Mэр(-




где



PMX= PMXa+ PMXp= Mэ


т.е. такой, как и в ранее рассмотренном режиме. Таким образом, как и в предыдущем случае, предлагаемая машина является асинхронной машиной, но получающей питание от источника постоянного тока, инвертируемого (преобразуемого) в переменный ток якоря коллектором, как преобразователем частоты. При этом для ввода в активный режим преобразования электрической энергии в механическую необходимо предварительно запитать ее якорь от источника с упомянутыми выше свойствами. Iа const, U var,
а затем, подавая механическую мощность Pмх (вращением наружного ротора), получаем за счет источника электрической энергии механическую энергию (выходную) Pвых с вала якоря при равных моментах на роторе и якоре. Поэтому предлагаемая машина является, по существу, машиноэлектрическим усилителем (МЭУ), в котором выходная механическая мощность управляется входной механической мощностью при подаче электрической мощности от источника питания, в отличие от известного электромашинного усилителя (ЭМУ), где электрическая мощность управляется входной электрической мощностью при подаче механической энергии от приводного двигателя. Принцип усиления мощности в предлагаемом устройстве можно пояснить, используя общепринятое обозначение скольжения

согласно которому при скорости вращения ротора


Учитывая, что электромагнитные моменты якоря Mэа и ротора Mэр одинаковы Mэа=Mэр=Mэ, усиление механической мощности подчиняется зависимости

Здесь принято абсолютное значение скорости






Так как S<1, то Kу>1. Так, при S 0,01 Kу=100.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4