Способ изготовления мультискана
Использование: полупроводниковая техника для изготовления координаточувствительного фотоприемника мультискана, используемого для измерения положения светового сигнала. Сущность изобретения: в способе изготовления мультискана, заключающемся в формировании на подложке изолированных друг от друга и от подложки двух базовых областей, изготовлении линейки встречно включенных р-n-переходов в упомянутых базовых областях, формировании общей шины вдоль внешнего края одной базовой области и нанесение делительного слоя на внешний край другой базовой области, новым является то, что на поверхность делительного слоя дополнительно наносят резистивный слой, выступающий за пределы делительного слоя с его внешней по отношению к p-n-переходам стороны на величину не менее Mmin, где
Mmin=
m
f*max/fmin и обладающий сопротивлением, превышающим сопротивление делительного слоя не менее чем в К раз, где К = m/M
fmin, затем определяют зависимость величины ошибки координирования f(x) путем измерения величины выходного напряжения в зависимости от положения центра светового пятна, находят максимальное значение ошибки координирования fmax, затем корректируют сопротивление делительного слоя путем изменения ширины дополнительного резистивного слоя с его наружной стороны по отношению к p-n-переходам в соответствии с зависимостью m(x)= M[1+Rm/Rd
(f(x)-fmax)], где m(x) - скорректированное распределение ширины резистивного слоя, мкм; Rm - сопротивление дополнительного резистивного слоя, Ом; Rd - сопротивление делительного слоя, Ом;
m - минимальная заданная величина изменения ширины дополнительного резистивного слоя, мкм; f(x) - зависимость ошибки координирования от положения центра светового пятна, %; fmax - максимальное значение измеренной ошибки координирования, %; f*max - максимально возможная заданная ошибка координирования, %; fmin - заданная ошибка координирования, %; М - ширина дополнительного резистивного слоя, мкм; D - ширина делительного слоя, мкм. 1 ил.
Изобретение относится к полупроводниковой технике и может быть использовано для изготовления координаточувствительного фотоприемника мультискан, используемого для измерения положения светового сигнала.
В настоящее время в бесконтактных методах измерения положения объектов используется целый ряд фотоэлектрических полупроводниковых координаточувствительных приборов, таких как приборы с зарядовой связью (ПЗС), p-i-n-фотодиоды с резистивным слоем, мультисканы. Для всех этих приборов важнейшими параметрами являются линейность координатной характеристики и пространственная чувствительность. ПЗС обладает жестким дискретным шагом, что обеспечивает высокую линейность координатной характеристики, но ограничивает пространственную чувствительность и точность. Для получения точности лучше 10 мкм в случае ПЗС требуется дополнительная сложная обработка электрического сигнала. P-i-n-фотодиоды с резистивным слоем и мультисканы имеют непрерывную координатную характеристику и высокую пространственную чувствительность (до 0,1 мкм), но их точность ограничена нелинейностью координатной характеристики. Известен способ изготовления координаточувствительного полупроводникового прибора фирмы Hamamatsu (тип S1352) [1] основанный на создании p-i-n-фотодиодов путем двустороннего легированного высокоомной подложки и нанесении электродов на p-слой, являющийся резистивным. Приборы, созданные по такому способу изготовления, имеют непрерывную координатную характеристику и высокую пространственную чувствительность (до 0,1 мкм). Однако точность данных приборов ограничивается нелинейностью координатной характеристики








f(x) зависимость ошибки координирования от положения центра светового пера,
fmax максимальное значение измеренной ошибки координирования,
f*max максимально возможная заданная ошибка координирования,
fmin заданная ошибка координирования,
M ширина дополнительного резистивного слоя, мкм;
D ширина делительного слоя, мкм. На чертеже приведено поперечное сечение структуры мультискана, где 1 - линейка встречно включенных p-n-переходов; 2 делительный слой; 3 общая шина; 4 дополнительный резистивный слой; 5 и 6 базовые области; 7 - подложка. Для решения вышеуказанной задачи изготовления мультискана, обладающего линейной координатной характеристикой с ошибкой координирования не более 0,1 необходимо обеспечить равномерность распределения сопротивления делителя с такой же точностью. Распределение сопротивления вдоль делительного слоя имеет неравномерность приблизительно 1 при ширине делителя 100 мкм. Коррекция такого сопротивления с точностью меньшей 0,1 требует возможности изменения ширины делительного слоя с точностью 0,1 мкм, что недоступно для современной техники. Для коррекции распределения сопротивления делительного слоя необходимо дополнительно нанести на его поверхность резистивный слой, имеющий более высокое сопротивление, чем сопротивление делительного слоя. Минимальную ширину дополнительного резистивного слоя, выступающую за пределы делительного слоя







что и определяет максимально необходимую ширину дополнительного резистивного слоя, расположенную вне делителя. Максимальная величина выступающей части дополнительного резистивного слоя определяется топологией прибора и может занимать всю свободную площадь окисленной поверхности кристалла вне базовой области. Максимальная величина





K=


Из этого выражения по известному сопротивлению делительного слоя Rd определяют величину сопротивления дополнительного резистивного слоя Rm. В качестве дополнительного резистивного слоя можно использовать пленки типа РС с сопротивлением приблизительно 1000 Ом/

m(x) M[1+Rm/Rd

Вычисленную зависимость вводят в блок управления перемещениями устройства коррекции ширины дополнительного резистивного слоя. Затем производят изменение ширины дополнительного резистивного слоя с его наружной стороны по отношению к p-n-переходам в соответствии с найденной зависимостью m(x) с помощью устройства коррекции. Способ осуществляется следующим образом. По технологии КСДИ (кремний с диэлектрической изоляцией) [3] на подложке из поликристаллического кремния формируют изолированные слоем SiO2 друг от друга и от подложки две базовые области 5 и 6 монокристаллического кремния n-типа; затем изготавливают линейку 1 встречно включенных p-n-переходов в базовых областях 5 и 6; формируют общую шину 3 путем напыления алюминия вдоль внешнего края базовой области 6, затем газофазным осаждением n+-поликристаллического кремния или диффузией фосфора создают делительный слой 2 вдоль внешнего края другой базовой области 5. Поверх делительного слоя 2 наносят магнетронным распылением резистивный слой 4, перекрывающий поверхность делительного слоя 2 с его наружной стороны. Затем измеряют выходное напряжение мультискана в зависимости от положения центра светового пера при сканировании последним вдоль фотоприемной площади. Из измеренной зависимости находят зависимость величины ошибки координирования от положения центра светового пера, затем корректируют сопротивление делительного слоя 2 путем изменения ширины резистивного слоя 4 с наружной стороны вдоль делителя в соответствии с зависимостью
m(x) M[1+Rm/Rd

с помощью азотного лазера. Пример. С целью подтверждения возможности линеаризации координатной характеристики и создания мультискана с систематической погрешностью менее 0,1% был изготовлен мультискан с дополнительным резистивным слоем. Для этого использовали кремниевые пластины n-типа с сопротивлением 7,5 Ом






Выводы. Таким образом, показано, что коррекция дополнительного резистивного слоя позволяет производить линеаризацию координатной характеристики мультискана вплоть до величины 5

1. Витглеб Г. Датчики. М. Мир, 1989. 195с. 2. Берковская К. Ф. Кириллова Н. В. Подласкин Б. Г. Столовицкий В. М. Токранова Н. А. Позиционночувствительный фотоприемник мультискан с высоким координатным разрешением. В сб. "Научно-технические достижения". М. ВИМИ, 1992, в. 2, с. 22 25. 3. Брюхно Н. А. Жарковский Е. М. Концевой Ю. А. Сахаров Ю. Г. Кремниевые структуры с диэлектрической изоляцией для изделий микроэлектроники. Обзоры по электронной технике. Серия 3, в. 4(1304), 1987, 40 с.
Формула изобретения




и обладающий сопротивлением, превышающим сопротивление делительного слоя не менее чем в К раз
K =


где М ширина дополнительного резистивного слоя, мкм;

f*max максимально возможная заданная ошибка координирования,
fmin заданная ошибка координирования,
затем определяют зависимость величины ошибки координирования от положения центра светового пятна f(x), путем измерения величины выходного напряжения в зависимости от положения центра светового пятна находят максимальное значение ошибки координирования fmax, затем корректируют сопротивление делительного слоя путем изменения ширины дополнительного резистивного слоя с его наружной стороны по отношению к p - n-переходам в соответствии с зависимостью
m(x) M[1 + Rm/Rd

где m(x) скорректированное распределение ширины дополнительного резистивного слоя, мкм;
Rm сопротивление дополнительного резистивного слоя, Ом;
Rd сопротивление делительного слоя, Ом;
D ширина делительного слоя, мкм.
РИСУНКИ
Рисунок 1NF4A Восстановление действия патента Российской Федерации на изобретение
Извещение опубликовано: 10.11.2005 БИ: 31/2005
MM4A - Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 09.07.2007
Извещение опубликовано: 27.02.2009 БИ: 06/2009