Фотоэлектрический анализатор
Изобретение относится к области контроля оптической плотности сред, частично поглощающих или рассеивающих оптическое излучение, а также контроля величин, однозначно связанных с оптической плотностью. Сущность изобретения: устройство содержит источник оптического излучения, разветвленный нерегулярный световод, измерительную кювету, кювету с образцовой средой или ее имитатор, два фотоэлектрических преобразователя приемника, через управляемые электронные ключи подключаемые к узкополосному усилителю, амплитудный детектор, фазочувствительный детектор, состоящий из двух управляемых электронных ключей и двух аналоговых запоминающих устройств и регистратора. Устройство также содержит формирователь импульсов управления электронными ключами, состоящий из промежуточного делителя, D-триггера и двух элементов ИЛИ-НЕ. 1 ил.
Изобретение относится к области контроля оптической плотности сред, частично поглощающих или рассеивающих оптическое излучение, а также контроля величин, однозначно связанных с оптической плотностью.
Оно, в частности, может быть использовано в технологическом процессе контроля содержания массовой доли белка в молоке в соответствии с ГОСТ 25179-82 Молоко. Колориметрический метод определения белка. Известен ряд аналогичных устройств, состоящих из источника оптического излучения и фотоэлектрического преобразователя, между которыми помещена прозрачная кювета с контролируемой средой, измерительного усилителя, входом подключенного к выходу фотоэлектрического преобразователя, и регистратора, подключенного к выходу усилителя [1 и 2] Эти устройства имеют одноканальную измерительную систему прямого преобразования, которой присущи общие недостатки: повышенные аддитивные и мультипликативные погрешности измерения, низкая температурная стабильность, "дрейф нуля", повышенная чувствительность к изменению напряжения питания, старению элементов и воздействию внешних засветок, что требует при их эксплуатации частных калибровок (как правило, перед каждым измерением) по двум параметрам: установка нуля и коэффициент усиления. Для нужд молочного животноводства и молочной промышленности в Советском Союзе до 1986 г. серийно выпускались цифровые белкомеры молока типа БМЦ-1 и БМЦ-2 [ 3 и 4 Однако указанные устройства также имеют одноканальную измерительную систему прямого преобразования, хотя и содержат второй оптический канал с фотодиодным преобразователем, включенным в схему автоматической регулировки мощности источника светового излучения (свето-излучающего диода), что позволяет несколько повысить температурную стабильность прибора и снизить влияние нестабильности напряжения питания, однако не исключает необходимости частой калибровки приборов. Известен также Анализатор цветности мутности жидкостей [5] Анализатор выполнен по двухканальной схеме с автоматическим уравновешиванием, содержащей источник света, систему зеркал, создающую два пучка света (оптических канала), механический модулятор (обтюратор) световых пучков, прозрачный сосуд с исследуемой жидкостью, помещаемый в первый световой пучок, "оптический клин" (компенсатор), помещаемый во второй оптический канал и перемещаемый реверсивным электроприводом. Устройство содержит фотоэлемент, подключенный к входу усилительной фазочувствительной схемы, выход которой связан с электроприводом оптического канала, и регистратор угла поворота "оптического клина". Преимуществом данного устройства является значительное уменьшение аддитивной и мультипликативной погрешности, а также отсутствие требований к линейности преобразователя. Использование одного и того же источника света для создания измерительного и уравновешивающего (компенсационного) световых потоков позволяет теоретически исключить погрешность, создаваемую источником света, из общей погрешности прибора, но требует использования сложной оптической системы с применением в ней шести зеркал, каждое из которых требует тщательной юстировки, которая может сбиться от вибраций и ударов при транспортировании и эксплуатации прибора. Старение лампы накаливания (несимметрическое потемнение баллона) также может нарушить симметрию распределения световых потоков в каналах. Наиболее близким по технической сущности к предлагаемому устройству является [6] содержащее источник оптического излучения, выполненный в виде двух сегментов светодиодной матрицы, подключенных к противофазным выходам генератора переменного напряжения, оптической системы формирования измерительного и компенсационного каналов, выполненной в виде световодов. В качестве узла сравнения устройство содержит регулируемую дискретную меру оптической плотности, фотоэлектрический преобразователь, узкополосный усилитель, фазовый детектор и регистратор. Однако относительно высокая стоимость указанного прибора (около одного миллиона рублей, по состоянию на декабрь 1994 г.) делает его практически не доступным для приобретения сельскохозяйственными товариществами и фермерскими хозяйствами. Задачей изобретения является создание надежного и дешевого устройства (за счет упрощения его оптической схемы), пригодного для применения на предприятиях молочной промышленности в их низовой молокоприемной сети, а также в сельскохозяйственных товариществах и фермерских хозяйствах, занимающихся производством молока и молочных продуктов. Задача решается за счет того, что в обоих каналах (измерительном и компенсационном) используется один и тот же источник оптического излучения (светодиод). В качестве фотоэлектрических преобразователей использованы два отдельных фотодиода, включенных для работы в токовом режиме, один из которых установлен в измерительном, а второй в компенсационном канале, которые поочередно с частотой управляющих прямоугольных импульсов скважности 2 подключаются к общему узкополосному усилителю. Устройство содержит формирователь управляющих импульсов, состоящий из промежуточного делителя, D-триггера и двух элементов ИЛИ-НЕ, который формирует две противофазные импульсные последовательности скважности -2 и две сфазированные синхронные с ними противофазные импульсные последовательности скважности -4, причем первая импульсная последовательность используется для коммутации фотоприемников. Устройство также содержит дополнительный амплитудный детектор, а фазочувствительный детектор выполнен в виде двух аналоговых запоминающих устройств, входами подключенных к выходам электронных ключей, управляемых двумя синхронными импульсными последовательностями скважности 4. Узлом сравнения устройства служит кювета с образцовым веществом или ее имитатор. На чертеже представлена схема устройства. Устройство содержит генератор 1, источник оптического излучения 2, разветвленный световод 3, формирующий оптические каналы измерительный и компенсационный, в первом из которых помещена кювета 4 с контролируемым веществом, а во втором кювета 5 с образцовым веществом или ее имитатор, фотоэлектрические преобразователи 6 и 7 соответственно измерительного канала и канала сравнения, электронные ключи 8 и 9 измерительного канала и канала сравнения, общий узкополосный усилитель 10, амплитудный детектор 11, фазочувствительный детектор, состоящий из электронных ключей 12 и 13 и аналоговых запоминающих устройств 14 и 15, к выходам которых подключается регистратор 16. Кроме того, устройство содержит формирователь импульсов управления, состоящий из последовательно соединенных делителя 17, D-триггера 18 (работающего в режиме делителя на 2), и двух элементов ИЛИ-НЕ 19 и 20, который формирует две противофазные импульсные последовательности скважности 2 А1 и







Формула изобретения
Фотоэлектрический анализатор, содержащий источник оптического излучения, оптическую систему формирования измерительного и компенсационного каналов, выполненную в виде разветвленного световода, прозрачную кювету с контролируемой средой, узел сравнения, фотоэлектрический преобразователь, подключаемый к входу усилителя, фазочувствительный детектор и регистратор, отличающийся тем, что в качестве источника оптического излучения использован светодиод, подключенный к генератору переменного напряжения, измерительный фотоэлектрический преобразователь выполнен в виде фотодиода, включенного для работы в токовом режиме и расположенного непосредственно за кюветой с контролируемой средой, устройство содержит второй фотоэлектрический преобразователь, идентичный первому, расположенный за узлом сравнения, представляющим собой кювету с образцовой средой или ее имитатором, причем оба фотоэлектрических преобразователя через электронные ключи в противофазе подключаются к входу усилителя, выходом подключенного к входу амплитудного детектора, выход которого через электронные ключи подключен к входам аналоговых запоминающих устройств, образующих фазочувствительный детектор, к выходу которого подключен регистратор, формирователь импульсов управления электронными ключами, состоящий из промежуточного делителя, D-триггера, прямой и инвертирующий выходы которого подключены к управляющим входам ключей, коммутирующих фотоэлектрические преобразователи, и к входам двух элементов ИЛИ НЕ, вторые входы которых подключены к выходу промежуточного делителя, а выходы элементов подключены к управляющим входам электронных ключей, коммутирующих аналоговые запоминающие устройства.РИСУНКИ
Рисунок 1