Фокусирующий акустический преобразователь

 

Использование: в акустических микроскопах и дефектоскопах. Сущность изобретения: преобразователь состоит из основания с вогнутой фокусирующей поверхностью на стороне, обращенной к исследуемому образцу, и нанесенным на эту сторону слоем пьезоэлектрического материала, отделенным от образца иммерсионной жидкостью. Фокусирующая поверхность выполнена в виде поверхности тела вращения с образующей, определяемой системой дифференциально-алгебраических уравнений: при начальном условии y(0) = H+h, где x и y - текущие координаты при начале координат; помещенном в точку фокусировки; h - глубина, на которой происходит фокусировка; H - максимальное расстояние от поверхности образца до фокусирующей поверхности; x1 - параметр системы; n = V1/V2 - отношение скоростей звука в образце и иммерсионной жидкости. 2 ил.

Изобретение относится к области неразрушающих ультразвуковых методов контроля и может быть использовано в приборах различного назначения, например, акустических микроскопах и ультразвуковых дефектоскопах.

Известен фокусирующий акустический преобразователь, содержащий цилиндрическое основание, одна из торцевых поверхностей которого выполнена сферической, а на другой расположен слой пьезоэлектрического материала, причем со стороны сферической поверхности основания имеется иммерсионная среда (жидкость) [1] Недостатками этого преобразователя являются отсутствие точной фокусировки излучения внутри исследуемого материала и низкая чувствительность на высоких частотах.

Выбор частоты принципиален в акустической микроскопии, поскольку длина волны определяет разрешающую способность прибора и чем выше частота (меньше длина волны), тем лучше разрешение прибора. Однако на высоких частотах (выше 1 ГГц) наблюдается значительное поглощение акустического излучения в иммерсионной среде (жидкости), что ведет к тому, что радиусы кривизны фокусирующей поверхности приходится делать малыми (порядка 50 мкм) и принципиально невозможно получить информацию с достаточно большой глубины.

Прототип изобретения фокусирующий акустический преобразователь, состоящий из основания с выполненной в виде тела вращения фокусирующей поверхностью на стороне, обращенной к исследуемому образцу и нанесенным на эту поверхность слоем пьезоэлектрического материала и иммерсионной средой [2] Недостаток этого преобразователя низкая разрешающая способность по глубине.

Техническим результатом от использования изобретения является устранение этого недостатка.

Данный результат достигается тем, что образующая тела вращения определяется системой дифференциально-алгебраических уравнений: при начальном условии y(0) H+h, где x и y текущие координаты при начале координат, помещенном в точку фокусировки; h глубина, на которой происходит фокусировка; H максимальное расстояние от поверхности образца до фокусирующей поверхности; X1 параметр системы;
n V1/V2 отношение скоростей звука в образце и иммерсионной жидкости.

Использование поверхности заявленной формы позволяет получить пучок акустических лучей, сходящихся в данном материале в одну точку. Разрешающая способность акустического микроскопа при этом будет соответствовать теоретическому пределу, т. е. длине волны. При этом можно изготовить преобразователь для работы на высоких частотах, где разрешающая способность выше фокусирующей акустическое излучение на любую глубину.

На фиг. 1 представлена конструкция фокусирующего акустического преобразователя; на фиг. 2 фокусирующая поверхность акустического преобразователя и принцип ее работы.

Преобразователь состоит из основания 1, представляющего собой кремниевую пластину. На одной стороне пластины методами, использующимися в технологическом процессе изготовления интегральных схем, сформированы фокусирующая поверхность заданной формы 2 и площадки для контактов 3. Далее нанесен слой диэлектрика (SiO2) 4, нижний металлический электрод 5, слой пьезоэлектрического материала 6 и второй электрод 7.

Преобразователь работает следующим образом.

Электрический сигнал от генератора подается на электроды 5, 7 и возбуждает в пьезоэлектрическом слое 6 акустическую волну. Акустическая волна распространяется в иммерсионной жидкости в направлении поверхности образца и после преломления на границе фокусируется в некоторую точку на заданной глубине образца благодаря выбору формы поверхности преобразователя.

Из некоторой точки 8, где будет происходить фокусировка, расположенной на заданной глубине образца 9, направляются к поверхности акустические лучи, идущие под различными углами. На границе раздела образец иммерсионная жидкость 10 эти лучи преломления в соответствии с законом преломления равны
V1sin = V2sin,
где и углы падения и преломления соответственно.

Далее, начиная от некоторой точки 11, строится поверхность, перпендикулярная всем лучам, исходящим из точки 8 и преломленным на границе 10. Положение точки 11 будет определять расстояние H от акустического преобразователя до поверхности, при котором будет происходить фокусировка на заданной глубине h. Это положение выбирается в зависимости от частоты и составляет для высоких частот (0,5-2,0 ГГц) 20-100 мкм. Размер преобразователя также выбирается в зависимости от частоты.

Приведенная на фиг. 2 поверхность соответствует случаю фокусировки в кремнии (V1 9130 м/с) на глубину 20 мкм при использовании в качестве иммерсионной жидкости воды (V2 1430 м/с) и расстоянии от преобразователя до поверхности 20 мкм при диаметре выемки 50 мкм. Форма поверхности вычисляется на ЭВМ путем численного решения системы дифференциально-алгебраических уравнений с соответствующими параметрами и начальными условиями и не задается простым аналитическим выражением.


Формула изобретения

Фокусирующий акустический преобразователь, состоящий из основания с выполненной в виде тела вращения фокусирующей поверхностью на стороне, обращенной к исследуемому образцу, и нанесенным на эту поверхность слоем пьезоэлектрического материала и иммерсионной средой, отличающийся тем, что образующая тела вращения определяется системой дифференциально-алгебраических уравнений

(x21(n2-1)+h2n2)(x-x1)2-x21(y-h)2= 0
при начальном условии y(0) Н + h,
где x и y текущие координаты при начале координат, помещенном в точку фокусировки;
h глубина, на которой происходит фокусировка;
H максимальное расстояние от поверхности образца до фокусирующей поверхности;
X1 параметр системы;
n V1/V2 отношение скоростей звука в образце и иммерсионной среде.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к неразрушающему контролю материалов и изделий и может быть использовано при ультразвуковой дефектоскопии и медицинской диагностике

Изобретение относится к технике звуковидения

Изобретение относится к акустическим устройствам, предназначенным для измерительных , технологических и других целей, и может быть использовано в акустических волноводах различного назначения

Изобретение относится к ультразвуковой технике, точнее к излучателям ультразвука с фокусирующими устройствами

Изобретение относится к средствам неразрушающего контроля ультразвуковыми волнами и может применяться в акустической микроскопии при исследовании акустических свойств материалов и изделий

Изобретение относится к технической акустике и предназначено для получения неоднородных акустических линз с плоскими рабочими поверхностями, применяемых в ультразвуковой дефектоскопии, медицинской диагностике и акустической голографии

Изобретение относится к способам очистки проволоки от технологических загрязнений смазочных материалов в водных растворах моющих средств и касается способа очистки проволоки и устройства для его осуществления

Изобретение относится к технологии выращивания водорастворимых оптических монокристаллов группы дигидрофосфата калия (KDP), которые могут быть использованы, например, при изготовлении активных элементов параметрических преобразователей лазерного излучения для квантовой оптики. Монокристаллы группы KDP выращивают из переохлажденного водного раствора на вырезанную заданным образом затравку, которую изолируют стенками из химически стерильной звукопрозрачной мембраны, в изолированную ростовую зону подают раствор, прошедший через систему очистки, а рост кристалла осуществляют при воздействии на затравку акустическим полем амплитудой 105-106 Па и частотой 0,5-2,0 МГц при его пространственном градиенте не менее 105 Па/см в режиме сканирования акустическим полем по растущей кристаллической поверхности. Технический результат - повышение скорости роста и оптической однородности кристаллов. 3 з.п. ф-лы, 3 ил., 3 пр.

Использование: для управляемого нагревания тканей организма посредством фокусированного ультразвука высокой интенсивности. Сущность изобретения заключается в том, что ультразвуковой HIFU преобразователь имеет резьбовое отверстие, в котором съемно расположен модульный датчик кавитации. Модульный датчик кавитации содержит модульный корпус, содержащий пьезоэлектрический преобразователь для восприятия акустических сигналов, указывающих на кавитацию. Модульный датчик кавитации имеет электроды, которые взаимодействуют с пружинными контактами в резьбовом отверстии, когда модульный корпус ввинчивается в резьбовое отверстие. Технический результат: обеспечение возможности вывинчивать и просто заменять без соединителей или пайки поврежденный датчик. 14 з.п. ф-лы, 12 ил.

Изобретение относится к акустике, в частности к средствам фокусирования акустического поля. Акустическая линза выполнена в виде кубоида с радиальным градиентом акустического коэффициента преломления с величиной ребра кубоида, равной (0.9-1.2)λΝ, где N=1,2,…, λ - длина упругой волны. Акустическая линза имеет величину относительного акустического коэффициента преломления от 1.1 nср до 1.6nср, где nср - акустический коэффициент преломления окружающей среды линзы, а по оптической оси линзы выполнен звукопроницаемый канал постоянного сечения с характерным поперечным размером не более 0.25λ, заполненный материалом с акустическим коэффициентом преломления, равным nср. Технический результат - обеспечение фокусировки упругой волны в область шириной менее дифракционного предела, 0,02λ. 2 ил.
Наверх