Способ рекуперационной обратноосмотической очистки сточных вод от ионов тяжелых металлов
Предлагаемый способ относится к способам мембранной очистки сточных вод и может быть использован для очистки стоков от ионов тяжелых металлов. Способ состоит в том, что сточную воду со стадии промывки гальванопроизводств подвергают механической фильтрации, затем подвергают обратноосмотическому разделению с получением фильтрата и концентрата и последующим возвращением фильтрата на стадию промывки и направлением концентрата на стадию извлечения металлов электрохимическим методом. На стадию промывки возвращают фильтрат в количестве 99% объем. от объема сточных вод, а на стадию извлечения металлов направляют концентрат в количестве 1% от объема сточных вод. 1 з.п. ф-лы, 1 ил.
Изобретение относится к способам мембранной очистки сточных вод и может быть использовано для очистки стоков от ионов тяжелых металлов.
Известен способ рекуперационной очистки сточных вод от ионов тяжелых металлов, включающий подачу сточных вод под избыточным давлением на полимерную мембрану и отвод фильтрата и концентрата [1] К причинам, препятствующим достижению требуемого технического результата при использовании известного способа, принятого за прототип, относится то, что в известном способе в смешанном потоке имеются примеси различных металлов, что создает условия, благоприятные для образования осадков, т.е. инкрустации мембран как обратноосмотических, так и электролизных, а это препятствует нормальному переносу молекул воды и ионов через мембрану и снижает эффективность процесса очистки в целом. Кроме того при электродиализном извлечении тяжелых металлов в присутствии посторонних ионов неоправдано возрастают затраты электроэнергии и снижается выход металлов по току. Наиболее близким способом является способ очистки локального хромосодержащего потока методом обратноосмотического разделения, в котором очищенная вода возвращается повторно на операцию промывки, а концентрат обратноосмотической установки и отработанный электролит направляются в реактор-нейтрализатор на восстановление хрома (VI) до хрома (VII) и реагентное осаждение. Полученная тонкодисперсная суспензия после реактора-нейтрализатора разделяется в отстойнике на твердую (осадок) и жидкую фазы. Осадок, представляющий собой смесь высажденных гидрооксидов металлов, направляется на шламохранилище. Осветленная вода после фильтрации направляется на выпарную установку. Полученный конденсат используется повторно для промывки деталей, а сухой осадок утилизируется [2] К причинам, препятствующим достижению требуемого технического результата при использовании известного способа, относится то, что в известном способе необходимо использовать реагент, возврат воды после реагентной обработки невозможен без дополнительного управления, на что уходят значительные энергетические затраты, затруднена утилизация осадков от реагентной обработки, невозможно повторное использование металлов в техпроцессе. Основные отличия заявляемого способа от способа [2] заключаются в следующем. Промывные воды предварительно до обратноосмотической обработки проходят стадию механической фильтрации от микронных и субмикронных примесей. Предварительная фильтрация в 1,5-2 раза увеличивает ресурс работы, снижает частоту обслуживания обратноосмотической установки, расход реагентов для промывки мембран, а также увеличивает селективность обратноосмотической установки в процессе очистки промывных вод. Однако основным принципиально важным отличительным признаком рассматриваемого прототипа и заявляемого способа является то, что обратноосматический концентрат, содержащий более 95% тяжелых металлов, извлеченных из промывных вод, подвергается реагентной обработке известью. В процессе реагентной обработки концентрата, которая использована в рассматриваемом прототипе, как и на большинстве действующих предприятий, образуются соли тяжелых металлов переменного состава. После фильтрации шлам с высоким содержанием солей тяжелых металлов, а также кальция, магния, с влажностью более 80% подлежит захоронению. Последнее, как правило, на предприятиях не осуществляется и с общезаводских свалок тяжелые металлы попадают в окружающую среду. В настоящее время общепризнано и доказано нами в ряде публикаций, что реагентная обработка нецелесообразна экономически и экологически. Кроме того, фильтрат после реагентной обработки дополнительно загрязняется солями жесткости. Сущность изобретения заключается в следующем. Промывную воду от технологического процесса подают в узел механической фильтрации на очистку от механических примесей, включая микрочастицы субмикронного размера, затем промывную воду подают в узел обратноосмотического разделения на фильтрат и концентрат, после чего фильтрат в объеме 99% подают на повторное использование в технологическом процессе, а концентрат в объеме 1% отводят на электрохимическую переработку для извлечения металлов и других ценных компонентов, поступающих на утилизацию в технологическом процессе. Во избежание попадания ионов жесткости в рекуперационный цикл, исходную воду перед подачей в технологический процесс подвергают механической фильтрации и обратноосмотической очистке. Пример. В заявляемом способе промывные воды I-й, II-й ступени, финишной промывки гальваничеких производств, производств печатных плат, химико-гальванической обработки поверхности металлов и других производств с содержанием одного из тяжелых металлов (медь, никель, цинк, свинец, кадмий и др.) с концентрацией до 0,05 г/л поступают на механический фильтр 1 (см. чертеж). На механическом фильтре происходит очистка промывных вод от микронных субмикронных механических примесей. Далее насосом высокого давления промывные воды (рабочее давление более 3 МПа) подают в обратноосматический аппарат 3 производительностью 2,3 м3/ч. Фильтрат из обратноосмотической установки 3 в количестве 2,475 м3/ч с содержанием ионов одного из металлов (меди, никеля, цинка, свинца, кадмия) до 5-20 мг/л возвращаются на промывку в основной технологический процесс. На стадии обратноосмотической обработки промывных вод также происходит очистка от ионов жесткости воды. Концентрат из обратноосмотической установки в количестве 25 л/ч с содержанием ионов одного из металлов (меди, никеля, цинка, кадмия) 4-4,5 г/л поступают в электролизер 4. В электролизере 4 на катоде происходит разряд ионов металла с получением металлических катодных осадков. С использованием катодов с гладкой поверхностью извлечение металлов осуществляют при катодной плотности тока 0,3-1,5 А/дм2 с выходом по току 30-70% степень извлечения металла составляет 80-85% При использовании объемно-проточных сложнопрофильных катодов разряд ионов металлов осуществляют при плотности тока 0,02-0,5 А/дм2 с выходом по току 50-80% степень извлечения металла составляет 95-98% При использовании объемно-проточных титановых катодов металлы извлекают в порошкообразной форме с размером частиц 15-120 мкм. В случае использования объемно-проточных катодов циркуляцию католита осуществляют со скоростью 2-4
Формула изобретения
1. Способ рекуперационной обратноосмотической очистки сточных вод от ионов тяжелых металлов, включающий подачу сточной воды со стадии промывки гальванопроизводства на обратноосмотическое разделение с получением фильтрата и концентрата и последующим возвращением фильтрата на стадию промывки и направлением концентрата на стадию извлечения металлов, отличающийся тем, что перед обратноосмотическим разделением воду подвергают механической фильтрации, а извлечение металлов с одновременным получением и утилизацией ценных экологически опасных продуктов осуществляют электрохимическим методом. 2. Способ по п.1, отличающийся тем, что на стадию промывки возвращают фильтрат в количестве 99% от объема сточных вод, а на стадию извлечения металлов направляют концентрат в количестве 1% от объема сточных вод.РИСУНКИ
Рисунок 1