Способ измерения скорости текучей среды и устройство для его осуществления
Использование: в измерительной технике для измерения расхода термических жидкостей. Сущность изобретения: излучают тепловой поток нагретым терморезистором в направлении к теплоотводу, измеряют изменение температуры терморезистора и мощность источника нагрева, по которым определяют скорость текучей среды. Изобретение предусматривает варианты с одним терморезистором и двумя теплоотводами или с двумя терморезисторами и тремя теплоотводами. Устройство содержит два терморезистора 1 и 7, три теплоотвода 3, 6, 8, изолятор 2, источник питания 4 с резисторами 11, 12, аналого-цифровой преобразователь 9 и вычислительное устройство 10. Терморезистор содержит подложку 13 и металлизированный слой 14 в виде обмотки 15. 7 з.п. ф-лы, 4 ил.
Изобретение относится к области измерительной техники и предназначено для измерения расхода термических жидкостей.
Известен способ измерения скорости текучей среды, в котором излучают тепловой поток помещенными в поток текучей среды на расстоянии по потоку двумя рабочими термодатчиками, измеряют разность температур рабочих термодатчиков и вычисляют скорость потока по измеренному изменению разности температур и величине потребляемой термодатчиками мощности. Известный способ реализован в устройстве [1] которое содержит два терморезистора, расположенных на расстоянии друг от друга по потоку. Питание подается на оба терморезистора, в результате температура первого по потоку терморезистора уменьшится, а второго увеличится. Разность температур является функцией скорости текучей среды. Недостаток устройства этого типа состоит в том, что сопротивление между двумя датчиками стремится увеличиваться с увеличением расхода до тех пор, пока не достигается некоторая критическая величина расхода. После этого разность сопротивлений имеет тенденцию уменьшаться с увеличением расхода. Эта нелинейность составляет проблему, ограничивающую диапазон скоростей, в котором может работать устройство. Техническим результатом от использования изобретения является увеличение эффективности и точности измерения. Для его достижения в способе измерения скоростей текучей среды, включающем излучение теплового потока термодатчиком, помещенным в поток измеряемой среды, при пропускании через него электрического тока, измерение увеличения температуры термодатчика относительно температуры текучей среды и вычисление скорости потока по измеряемому увеличению температуры и величине потребляемой термодатчиком мощности, тепловой поток излучают в направлении, перпендикулярном направлению текучей среды, к теплоотводу, размещенному в потоке на расстоянии, обеспечивающем перенос к нему потока и его модуляцию текучей средой, причем пространство между теплоотводом и термодатчиком свободно от препятствий, а также тем, что тепловой поток дополнительно излучают в направлении к второму теплоотводу, причем первый и второй теплоотводы равноудалены от излучающих поверхностей термодатчика в разные стороны. Кроме того, дополнительно излучают тепловой поток в направлении, перпендикулярном нагреванию потока, опорным термодатчиком, размещенным в потоке и подключенным к источнику электрического тока, мощность которого меньше мощности, подаваемой на рабочий термодатчик, причем тепловой поток излучают в направлении второго и третьего теплоотводов, измеряют температуру опорного термодатчика, а при вычислении скорости текучей среды учитывают разность температур рабочего и опорного термодатчиков, при этом второй теплоотвод располагают между рабочим и опорным термодатчиками, а третий теплоотвод располагают симметрично второму относительно опорного термодатчика. Для достижения указанного технического результата устройство для измерения скорости текучей среды, содержащее рабочий термодатчик, установленный в потоке и связанный с источником электрического тока, измерители температуры и мощности, связанные с вычислительным устройством, снабжено опорным термодатчиком, установленным в потоке и связанным с соответствующим источником электрического тока, и тремя теплоотводами, один из них установлен между термодатчиками, а два других по разные стороны от них, а также измерителем температуры опорного термодатчика и измерителем разности температур рабочего и опорного термодатчиков, каждый теплоотвод расположен на равном расстоянии от соответствующего термодатчика в направлении, перпендикулярном направлению текучей среды, при этом измерители температуры рабочего и опорного термодатчиков, измеритель мощности рабочего термодатчика и измеритель разности температур связаны с вычислительным устройством через аналого-цифровой преобразователь, каждые датчик и теплоотвод имеют противолежащие поверхности, которые параллельны друг другу, кроме того, датчики содержат резистивный элемент, плоскость которого параллельна противолежащей поверхности теплоотвода, и подложку, покрытую металлическим слоем, который образует резистивный элемент. Устройство, реализующее способ измерения, изображено на чертеже, где на фиг. 1 показан вариант устройства с одним термодатчиком и одним теплоотводом, на фиг. 2 вариант устройства с одним термодатчиком и двумя теплоотводами, на фиг. 3 вариант устройства с двумя термодатчиками и тремя теплоотводами, на фиг. 4 показана конструкция термодатчика. Устройство содержит /фиг. 1/ рабочий термодатчик 1 в виде фольги, смонтированный в изоляторе 2, первый теплоотвод 3, источник питания /электрического тока/ 4, измерительную схему 5, второй теплоотвод 6 /фиг. 2/, расположенный симметрично первому относительно термодатчика 1, опорный термодатчик 7 /фиг. 3/, третий теплоотвод 8, аналого-цифровой преобразователь 9 и вычислительное устройство 10. Рабочий и опорный термодатчики соединены с общим источником питания через различные сопротивления 11 и 12. Каждый термодатчик имеет тонкий изоляционный слой-подложку 13, покрытую тонким слоем 14 проводящего металла. Слой металла протравлен и образует обмотку 15, являющуюся резистором. Обмотка 15 и подложка 13 представляют собой плоские поверхности. Согласно фиг. 1, обмотка 15 термодатчика соединена с источником электрического тока 4, который обеспечивает нагрев обмотки 15 термодатчика, в результате термодатчик излучает в измеряемый поток тепло. Измерительная схема 5 измеряет потребляемую термодатчиком мощность, получая информацию о температуре. Теплоотвод 2 выполнен из металла, который легко проводит тепло и тем самым оттягивает и поглощает генерируемое тепло от датчика 1, при этом направление потока жидкости перпендикулярно направлению теплового потока. Для пояснения сущности изобретения в активном объеме между термодатчиком 1 и теплоотводом 2 выбирается инкрементный объем 16. При этом использованы следующие обозначения: Z расстояние между датчиком 1 и инкрементным объемом 16, dZ толщина инкрементного объема 16, A площадь инкрементного объема 16, To- температура датчика 1, Ta окружающая температура теплоотвода 2 и жидкости, протекающей через расходомер, T температура жидкости в инкрементном объеме 16, Q тепло, C теплоемкость или удельная теплоемкость жидкости, D плотность жидкости,K теплопроводность жидкости,
d дифференциальный оператор,
t время,
V средняя молекулярная скорость жидкости, протекающей за датчиком 1,
W мощность, подаваемая на жидкость датчика 11. Профиль постоянной скорости жидкости предполагается через зазор между датчиком 1 и теплоотводом 3. Тепло Q1, содержащееся в инкрементном объеме 16, пропорционально теплоемкости С жидкости, массе жидкости (DAdZ) и ее температуре T следующим образом:
Q1 CDTAdZ
Скорость аккумулирования тепла в инкрементном объеме 16 составляет dQ1/Dt минус скорость, с которой тепло удаляется с элемента жидкостью, протекающей со скоростью V, следующим образом:
d



Скорость теплового потока или потока от датчика 1 в инкрементный объем 16 пропорциональна площади поверхности A, теплопроводности жидкости K и наружному нормальному градиенту температуры dT/dZ следующим образом:
d

Скорость теплового потока из инкрементного объема 16 определяется следующим образом:
dQ3/dt=dQ2/dt +d/dZ(dQ2/dt)dZ -KAdT/dZ-d/dZ(KAdT/dZ)dZ. В результате сохранения тепла:
dQ2/dt-dQ3/dtdQ1/dt;
-KAdT/dZ +KAdT/dZ+d/dZ(KAdT/dZ)dZ CDAdZ[dT/dt-[T-TaV] и
d2T/dZ2=CD/K

В стабильном состоянии dT/dt=0 и d2T/dZ2= CDV/K(-T+Ta). Это дифференциальное уравнение вместе с нижеследующими граничными условиями описывает тепловое окружение /среду/ в активном объеме 16 между датчиком 1 и теплоотводом 3. 1. При Z 0 /датчик 1/
а) dT/dZ-(1-/KA) (мощность, подаваемая на датчик 1) -W/KA
б) T T0
2. При Z=g (поверхность теплоотвода 3) T=TA
Поэтому уравнение стабильного состояния, описывающее температуру T для любого местоположения Z в активном объеме 16, будет:
T=Ta+[(g-1)W/KA]exp[-(g-Z)SQRT(CDV/K)]
Уравнение стабильного состояния, описывающее температуру датчика при Z= 0, будет
T0=Ta + [gW/KA]exp[-(g)SQRT(CDV/K)]
Поэтому повышение температуры TR=T0-Ta датчика 1 выше окружающей может быть выражено как:
TR=(КОНСТАНТА1






Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4