Электрод-инструмент
Использование: электрохимическая обработка деталей машин из труднообрабатываемых материалов вращающимся электродом - инструментом. Сущность изобретения: электрод - инструмент выполнен в виде трубы 1 с рабочей торцевой поверхностью, на которой выполнены каналы 3 для электролита убывающей глубины от центра к периферии. Каналы выполнены в радиальном направлении, имеют параболическую форму, а их глубина на периферии равна нулю. Глубина каналов определяется выражением: ho
r2o-K1
K2
ro/K1
n
b , где K1= 2 ... 3, K2=0,3 ... 0,6 мм, n - число каналов на рабочем торце, b - ширина каналов, r0 - радиус центрального отверстия электрода в начале канала до нуля на периферии, при этом ширина каналов "b" вдоль радиуса выполнена постоянной. 2 ил.
Изобретение относится к области технологии машиностроения, изготовлению двигателей и энергетических установок, в частности к электрофизической и электрохимической обработке деталей машин, и касается конструкции инструмента для электрохимической обработки.
При реализации электрохимических процессов нормальный режим требует эффективного удаления из зоны обработки продуктов анодного растворения детали, обеспечение необходимого температурного режима, а также гидродинамических условий. Решение этих задач производится за счет оптимизации конструкции каналов для транспортировки рабочего электролита, совершенствования рабочей поверхности электрод-инструментов. Имеются также технические решения по созданию определенных гидродинамических условий, например создание противодавления электролита /1/. Размерная электрохимическая обработка деталей машин характеризуется определенными особенностями, в частности, диспергирование (съем) материала с поверхности заготовки осуществляется на атомарном уровне. В то же время точность обработки характеризуется 8-9 квалитетами, шероховатость обработанной поверхности не лучше Ra 1,25.2,5 мкм. Невысокие качественные показатели электрохимической обработки во многом объясняются нестабильностью гидродинамических условий в зоне обработки. Эффективность процесса электрохимической обработки деталей машин может быть повышена за счет совершенствования конструкции электрод-инструментов, что обеспечивает интенсификацию снабжения электролитом рабочей зоны. В известных технических решениях предлагается закручивание потока электролита за счет применения каналов специальной формы. К недостаткам аналогов относится прежде всего сложности их использования при электрохимической обработке с вращением электрод-инструмента. В последнем случае при определенных условиях вследствие действия центробежных сил возможен "разрыв" сплошности потока электролита в рабочей зоне. Причем эти силы увеличиваются при удалении конкретного участка рабочей поверхности электрод-инструмента от оси его вращения. Таким образом могут быть объяснены нестабильности процесса электрохимической обработки, ухудшение качественных характеристик. Известно также выбранное авторами в качестве прототипа техническое решение. В известном решении электрод-инструмент имеет трубчатую форму с рабочей поверхностью на торце и центральным каналом для подачи электролита в зону обработки. При этом глубина канала у периферии рабочей торцевой поверхности электрод-инструмента до пяти раз меньше, чем в его центральной части при равной ширине канала. Таким образом реализуется сбалансированная подпитка свежим электролитом всех участков обрабатываемой поверхности детали, противолежащих рабочей торцевой поверхности электрод-инструмента. В то же время при электрохимической обработке деталей машин с вращением электрод-инструмента не исключается возможность "разрыва" потока электролита, поэтому форму каналов нельзя признать оптимальной. Целью заявляемого изобретения является повышение эффективности и стабильности процесса электрохимической обработки деталей машин из труднообрабатываемых материалов при реализации обработки с вращением электрод-инструмента, имеющего рабочую торцевую поверхность. Поставленная цель достигается тем, что в известном электрод-инструменте для электрохимической обработки с вращением и осевой подачей по направлению к заготовке, выполненном в виде трубы, имеющей рабочий торец с каналами для электролита убывающей глубины от центра к периферии, электрод-инструмент снабжен на торце каналами для электролита параболической формы, глубина которых на периферии равно нулю, а в центральной части выбираются из соотношения:
К2= 0,3.0,6 коэффициент, учитывающий частоту вращения электрод-инструмента при электрохимической обработке. Литературный и патентный анализ показывает, что аналогов отличительным признакам заявляемого технического решения, которые квалифицируются как существенные, нет. На фиг. 1 представлен чертеж общего вида заявляемого электрод-инструмента для электрохимической обработки деталей машин из труднообрабатываемых материалов с каналами для электролита на рабочей торцевой поверхности. На фиг. 2 представлен вид на рабочую торцевую поверхность электрод-инструмента. Электрод-инструмент, как показано на фиг. 1, имеет вид трубы 1 с центральным отверстием 2 для подачи электролита в межэлектродный промежуток. Электрод-инструмент имеет рабочее вращение

fц=Kц

где
Кц коэффициент, зависящий от плотности электролита и угловой частоты вращения электрод-инструмента

За счет действия центробежной силы формируется дополнительное местное давление прокачки электролита, что в свою очередь требует его повышенного местного расхода Q по сравнению с расходом через центральное отверстие электрод-инструмента Qо Удельная сила сопротивления вязкости может быть определена, как:

где
Кс коэффициент, зависящий от вязкости электролита и величины межэлектродного промежутка,
Q расход электролита через сечение потока радиуса r. В случае нарушения сплошности потока электролита, его перемещение в межэлектродном промежутке осуществляется за счет действия центробежных сил. В сечении потока радиуса r расход электролита составит:
Q=Qо+n(Qк.о-Qк), (4)
где
Q0 расход электролита через центральное отверстие электрод-инструмента (поз. 2, фиг. 1),
Qко расход электролита в начальной зоне канала при r=rо,
Qк расход электролита в канале при r=rк,
n число каналов для электролита на рабочей торцевой поверхности электрод-инструмента. С учетом полученных выражений (2).(4) расход электролита через один из каналов может быть определен, как:

Из полученной формулы (5) следует важный вывод о том, что с увеличением значения радиуса r расход электролита в канале должен уменьшаться. Следовательно, площадь сечения канала Fк с удалением от оси вращения электрод-инструмента должна убывать, а именно:
Fк=Fк.о-KF

где
КF коэффициент, зависящий от площади сечения,
Fк.о. площадь сечения канала для электролита при r=r0. На основании полученных зависимостей в конце рабочего торцевого участка электрод-инструмента, когда r= r1 (фиг. 1), должно обязательно выполняться условие: Fк=0. Практика использования электрохимической обработки деталей машин в промышленности показывает, что для электрод-инструментов характерны каналы преимущественно прямоугольной формы, тогда площадь их равна
FК=b

где
h глубина канала для электролита,
b ширина канала. На основании выражения (7) площадь сечения канала для электролита на рабочем торце электрод-инструмента может быть легко изменена при соответствующей подборе величин "b" и "h". При этом площадь сечения канала Fк.о. (когда r= rо) должна быть не меньше определенного предела, чтобы обеспечить требуемый расход электролита Qк на основании выражения (5). Точность и стабильность процесса электрохимической обработки деталей машин могут быть обеспечены, когда гидростатические давления электролита в рабочей торцевой части электрод-инструмента при одинаковом радиусе также были бы одинаковы. На практике каналы для электролита на торце электрод-инструмента выполняются путем фрезерования дисковыми или концевыми фрезами, в связи в чем целесообразно, чтобы ширина каналов была постоянной b=const. Следовательно, площадь его сечения Fк будет уменьшаться за счет изменения глубины канала, а именно:
h=hо-Кh

где
hо глубина канала для электролита вблизи центрального отверстия электрод-инструмента, где r=r0,
Кh постоянный коэффициент, зависящий от параметров электрохимической обработки и величины отверстия для электролита. На периферийных участках, когда r=r1, должно выполняться условие h=0, таким образом получаем:
hо=Kh

Полученное выражение характеризуют параболическую форму канала для электролита на рабочем торце электрод-инструмента, а именно:
h = Kh(r21- r2o) (9)
Оптимальный расход электролита, обеспечивающий стабильный гидродинамический режим электрохимической обработки, требует определенного соотношения между площадями сечений отверстий и каналов для электролита, следовательно:
Fотв


где
К1= 2. 3 коэффициент, учитывающий интенсивность прокачки электролита (меньшее значение для более интенсивной прокачки под высоким давлением),
Fотв=


n число каналов для электролита,
Fмэп= 2




Fмэп=K2

где
К2 0,3.0,6 мм коэффициент, определяющий зависимость от скорости вращения электрод-инструмента (меньшее значение для средней и небольшой скорости вращения). Путем преобразования выражения (10), получаем:

Величина К1 2.3 выбрана из следующих соображений, которые подтверждены экспериментально. Если К1 <2, увеличивается сечение каналов для электролита на рабочей торцевой поверхности электрод-инструмента. При этом возможно снижение эффективности удаления из рабочей зоны продуктов электрохимического растворения материала заготовки. В противном случае, когда К1 > 3, ухудшаются показатели качества и стабильности электрохимической обработки. Оценка показала следующее. Для электрохимической обработки с вращением электрод-инструмента при частоте 500 об/мин (на основании вышеизложенного, принимаем К2 0,33 мм) и давлении электролита 0,4 МПа (по рекомендации принимаем значение К1 3), при диаметре центрального отверстия для электролита 8 мм (соответственно с этим радиус r0 4 мм), число каналов на торце n 4 и их ширине b 2 мм каждый, получает глубину каналов вблизи центрального отверстия hо

Формула изобретения

где К1 2.3;
К2 0,3.0,6 мм;
n число каналов на рабочем торце;
b ширина каналов;
ro радиус центрального отверстия электрода в начале канала до нуля на периферии,
при этом ширина каналов b вдоль радиуса выполнена постоянной.
РИСУНКИ
Рисунок 1