Способ усиления и генерации свч-колебаний и устройство для его осуществления
Изобретение относится к областям физики плазмы и радиофизики и может быть использовано для разработки усилителей и генераторов электромагнитных колебаний в широком диапазоне частот. Предлагаемые способ и устройство позволяют непосредственно преобразовывать энергию оптического излучения ИК, видимого и УФ диапазонов в энергию СВЧ-колебаний, при отсутствии источника электрического питания. В предлагаемых способе и устройстве не требуется охлаждения до сверхнизких температур и присутствия сильного внешнего магнитного поля. После нештатных пробоев, замыкания - автоматическое восстановление рабочих характеристик. Напряжения, получаемые на выходе предлагаемого устройства, превышает на 1 - 2 порядка показатели полупроводниковых устройств. Коэффициент усиления в настоящее время сравним с коэффициентом усиления квантовых усилителей. 2 с.п. ф-лы, 1 ил.
Предложенное изобретение относится к областям физики плазмы и радиофизики и может быть использовано для разработки на его принципах усилителей и генераторов электромагнитных колебаний в широком диапазоне частот.
Плазма с АОП во многом схожа с лазерами и квантовыми усилителями. Так, в квантовых устройствах наличие инверсной заселенности возбужденных состояний приводит к созданию в такой среде отрицательного коэффициента поглощения. Так и в плазме, формирование неравновесной функции распределения свободных электронов по энергиям (ФРЭЭ) может привести к наличию отрицательной проводимости, что эквивалентно отрицательному коэффициенту поглощения. Известны способы и устройства для усиления и генерации СВЧ-колебаний, основанные на туннельном и Ганна эффектах в полупроводниках. Усиление и генерация СВЧ-колебаний обусловлены N-образной вольт-амперной характеристикой, имеющей участок с отрицательным дифференциальным сопротивлением. Недостатками полупроводников являются малые мощности, трудность частотной перестройки, потребность в источнике электрического питания. Известен способ и устройство для усиления и генерации СВЧ-колебаний, основанное на явлении индуцированного излучения (квантовый усилитель и генератор). В качестве рабочего вещества в данном случае используют диамагнитные кристаллы с примесью парамагнитных ионов. Недостатками квантовых устройств являются трудность создания однородных протяженных рабочих сред, узкий диапазон перестройки, необходимость источника сильного магнитного поля, для большинства охлаждение до низких температур, потребность в источнике электрического питания. Известен способ усиления и генерации СВЧ-колебаний в фазе обрыва электрического разряда в инертных газах [1] наиболее близкий по решению технической задачи к предлагаемому изобретению, выбранный за прототип. Среда с АОП в данном случае формируется в релаксирующем слабоионизованном газе, поэтому длительность существования эффекта АОП оказывается малой порядка 3




1. Прозрачность резонатора для оптического излучения в нужном, для создания фотоплазмы с АОП, диапазоне;
2. Непрозрачность резонатора в СВЧ-диапазоне для достижения высокой добротности в этой области частот. Таким образом, как форма резонатора в виде цилиндра, так и форма и количество отверстий для оптического излучения при реализации способа не принципиальна. Отличие предлагаемой заявки от использованных прототипов заключается в том, что:
1. Среду с АОП формируют непосредственно в фотоплазме;
2. Оптическое возбуждение производят облучением газовой смеси в газовой ячейке, помещенной в СВЧ-резонатор;
3. Отбор СВЧ-энергии производят в СВЧ-резонаторе;
4. В качестве источника энергии используют оптическое излучение;
5. Коэффициент усиления >1 (достигается созданием среды с АОП);
6. Возможно использовать резонатор не цилиндрической формы;
7. Возможно использовать резонатор с отверстиями для оптического излучения отличными от щелевидных. Технико-экономическое обоснование:
1) Большие на 1 2 порядка, по сравнению с полупроводниками, напряжения;
2) Коэффициент усиления зависит от состава смеси и в настоящее время сравним с коэффициентом усиления квантовых усилителей;
3) Для практического применения может оказаться важным:
а) использование в качестве источника энергии свет ИК, видимого и УФ диапазонов;
б) простота создания однородных, протяженных рабочих сред в газовой фазе по сравнению с твердотельной электроникой, что в конечном итоге определяет максимальный коэффициент усиления;
в) автоматическое восстановление рабочих характеристик плазменной среды после нештатных пробоев, замыканий;
г) отсутствие необходимости охлаждения до сверхнизких температур и присутствия сильного внешнего магнитного поля в отличие от парамагнитных усилителей. Технико-экономическая эффективность предлагаемого способа по сравнению с мировым уровнем техники, заключается в том, что существенным образом увеличивает возможности дальнейшей реализации предлагаемого изобретения при разработке генераторов и усилителей в широком диапазоне частот, а также преобразователей световой энергии в энергию СВЧ-колебаний. Предлагаемый способ может быть коммерчески реализован на национальном и мировом рынках. Литература
1. Рохленко А. В. Абсолютно отрицательная проводимость в релаксирующем слабоионизованном газе. ЖЭТФ, т. 75, вып. 4(10), 1978, с. 1315 1320 (прототип). 2. Warman J.M. Sowadw U. De Haas M.P. Transient negative mobility of hot electrons in gaseous xenon. Phys. Rev. 1985, v. 31, N 3, p. 1974 - 1976. 3. Головинский П.М. и Щедрин А.И. Абсолютная отрицательная проводимость в несамостоятельном разряде в инертных газах. Письма в ЖТФ, т. 12, вып. 19, 1986, с. 1162 1166. 4. Дятко Н.А. Кочетов И.В.и Напартович А.П. К вопросу об абсолютной отрицательной проводимости низкотемпературной плазмы. Письма в ЖТФ, 1987, т. 13, вып. 23, с. 1457 1461. 5. Швейгерт В.А. Об отрицательной проводимости слабоионизованного газа. Физика плазмы, т. 14, вып. 6, 1988, с. 745 748. 6. В. Е. Голант Сверхвысокочастотные методы исследования плазмы. М. Наука, 1968. 7. Блашков В.И. Золотарев О.А.и Скребов Б.Н. Решение о выдаче охранного документа патентной экспертизы от 27.02.92 г. по заявке N 4940088(044770) "Способ получения отрицательной проводимости в газовой ячейке" от 23.05.91
8. Блашков B.И. Золатарев О.А. и Скребов В.Н. Авторское свидетельство N 4847180/09/073195 "Регулируемый цилиндрический СВЧ-резонатор", 1992 (прототип). 9. СВЧ излучение низкотемпературной плазмы, под ред. A.E. Башаринова. M. Сов. радио, 1974.
Формула изобретения
РИСУНКИ
Рисунок 1