Ультразвуковой наклономер
Сущность изобретения: ультразвуковой наклономер содержит корпус, частично заполненный жидкостью с большим удельным весом и разделенный перегородкой на две равные емкости так, что жидкость сообщается в нижней части корпуса, измерительные трубки, гидравлически связанные соответственно с каждой из емкостей полости корпуса, жидкость с малым удельным весом, заполняющую оставшуюся часть емкостей, а также половину объема измерительных трубок, перепускной клапан, пьезоизлучатели, размещенные в основании каждой из измерительных трубок в плоскости основания трубок, измерительный блок, внутренняя полость корпуса выполнена в виде сферы, жидкость с большим удельным весом заполняет полость корпуса ровно наполовину. Диаметр измерительных трубок выбран из соотношения:
- коэффициент поверхностного натяжения жидкости в измерительных трубках,
- плотность жидкости в измерительных трубках, g - ускорение свободного падения, q - краевой угол смачивания между жидкостью в измерительных трубках и материалом стенок измерительных трубок. Диаметр измерительных трубок в ближней зоне Xбл пьезоизлучателей, определяемой как Xбл= r2 F/C, где F и С - частота и скорость распространения ультразвуковой волны соответственно, равен диаметру пьезоизлучателя. 1 з.п. ф-лы, 3 ил.
Изобретение относится к области измерительной техники и служит для определения углов наклона различных объектов в широком /
90o/ диапазоне углов с высокой точностью.
где
коэффициент поверхностного натяжения жидкости в измерительных трубках; r плотность жидкости в измерительных трубках; g ускорение свободного падения; q краевой угол смачивания между жидкостью в измерительных трубках и материалом стенок измерительных трубок. Кроме того, указанный технический результат достигается за счет того, что диаметр измерительных трубок на выходе капилляра в ближней зоне Xбл пьезоизлучателей, определяемой как Xбл=r2 F/C, где: F и C - частота и скорость распространения ультразвуковой волны соответственно, равен диаметру пьезоизлучателя. На фиг. 1 изображена схема конструкции предлагаемого наклономера. На фиг. 2 показана модель для расчета диаметра измерительных трубок. На фиг. 3 показана зависимость предлагаемой величины диаметра измерительных трубок от величины краевого угла смачивания между жидкостью и стенками измерительных трубок как графическая иллюстрация предлагаемой формулы. Наклономер содержит корпус 1 в виде сферы, до половины заполненной жидкостью с большим удельным весом 2 и разделенной перегородкой 3 на две равные емкости 4,5 так, что жидкость 2 сообщается в нижней части корпуса, измерительные трубки 6, 7, гидравлически связанные соответственно с каждой из емкостей полости корпуса, жидкость с малым удельным весом 8, заполняющую оставшуюся часть емкостей 4, 5, а также половину объема измерительных трубок 6, 7, перепускной клапан 9, пьезоизлучатели 10, 11, размещенные в основании каждой из измерительных трубок в плоскости основания трубок, измерительный блок 12. Для предотвращения перетекания жидкости 8 между измерительными трубками они отделены друг от друга перегородкой 13 с малым отверстием в случае вакуума в свободном пространстве над жидкостью 8. Измерительные трубки 6, 7 выполнены с внутренним диаметром Дкап с таким расчетом, чтобы даже при горизонтальном расположении трубок /угол наклона 90o/ мениск 14 жидкости 8, служащий границей отражения ультразвука, сохранял свою форму и располагался ортогонально оси измерительных трубок, см. фиг. 2, здесь 1 измерительная трубка, 2 жидкость, 3 мениск. В ближней зоне Хбл измерительная трубка выполнена с диаметром D, равным диаметру пьезоизлучателя. Наклономер работает следующим образом. При наклонах корпуса 1, к примеру, вправо, жидкость 2 занимает новое относительно корпуса положение, что приводит к вытеснению более легкой жидкости 8 в измерительную трубку 7 с приращением столба, равным отношению проходных сечений емкости 5 и трубки 7. Указанное приращение берется относительно приращения уровня жидкости 2. Точно такое же приращение, но с обратным знаком происходит в измерительной трубке 6. Измерение уровней жидкости в измерительных трубках осуществляется времяимпульсным методом посредством ультразвуковой локации с помощью пьезоизлучателей 10, 11 и измерительного блока 12, измеряющего временные промежутки прохождения ультразвука от пьезоизлучателей до границы раздела жидкость воздух и обратно. Измеренные временные интервалы пропорциональны углу наклона и могут обрабатываться как по прямой, так и по дифференциальной схеме. Устойчивость мениска определяется из следующих соотношений. Как известно из физики, силы поверхностного натяжения создают подповерхностное давление Pмн= 2
/Rмн, где:
коэффициент поверхностного натяжения жидкости; Rмн радиус мениска. Следовательно, основным условием устойчивости мениска в трубке будет его сферичность, которая достигается при значении краевого угла смачивания между жидкостью и стенками измерительной трубки q в пределах от 90 до 180o, а также соответствующим диаметром капилляра. Чем больше значение q, тем устойчивее мениск и тем меньше должен быть диаметр трубки, см. фиг. 2. Вогнутый мениск (при q в пределах от 0 до 90o) способствует рассеиванию ультразвуковой волны и поэтому не рассматривается. Из рассмотрения треугольника ABC на фиг. 2 следует, что при заданном краевом угле смачивания q внутренний диаметр измерительной трубки Dкап связан с радиусом мениска Rмн соотношением:
Условием устойчивости мениска в наклонной трубке является превышение капиллярного давления Pкап над гидростатическим давлением, создаваемым столбом жидкости с высотой, равной диаметру трубки Dкап. Условие записывается как 2
/Pмн >
g
Dкапгде
плотность жидкости в измерительных трубках;g ускорение свободного падения. После подстановки сюда выражения для Pмн, полученного ранее, получим условие устойчивости мениска в наклонной трубке:

Так как сильное сужение капилляра затрудняет прохождение ультразвукового импульса, полученное соотношение принимается как самое оптимальное для капиллярно-жидкостных волноводов и при выборе диаметра трубки знак "меньше" заменяется на знак "=". На фиг. 3 показана графическая иллюстрация полученной зависимости для трех различных жидкостей: ртуть, глицерин, вода. Представленные зависимости охватывают все возможное разнообразие материалов измерительных трубок, не смачиваемых перечисленными жидкостями, и наглядно иллюстрируют рассчитанное условие устойчивости мениска в капиллярах. Устойчивость границы отражения ультразвуковой волны во всем диапазоне углов наклона наклономера позволяет получить стабильный отраженный сигнал во всем диапазоне измерения, что повышает точность измерения углов по сравнению с известными приборами. Т. к. в ближайшей зоне ультразвукового пучка Хбл., определяемой как Хбл= r2 F/C, где F и С частота и скорость распространения ультразвуковой волны соответственно, акустическое поле ультразвуковой волны осциллирует вдоль осей Z, X, Y, диаметр измерительной трубки в ближайшей зоне равен диаметру пьезоэлемента. Такое решение позволяет получить максимальную амплитуду акустического поля в устье капилляра, а также на выходе из капилляра после отражения ультразвуковой волны от мениска, что также повышает точность измерений. Использование капиллярных эффектов позволяет существенно повысить точность и расширить диапазон измерения углов вплоть до 90o без существенного ослабления амплитуды отраженного сигнала во всем диапазоне. Выполнение корпуса в виде сферы и заполнение его тяжелой жидкостью ровно наполовину позволяет получить практически линейную зависимость приращения уровня жидкости в измерительных трубках в зависимости от угла наклона. Узкое сечение измерительных трубок позволяет достичь высокого коэффициента приращения (20 30 раз) уровня легкой жидкости при переходе из широкой части корпуса в узкую относительно приращения уровня тяжелой жидкости при незначительном диаметре корпуса наклономера. Такой коэффициент трансформации соответствует чувствительности наклономера порядка 2 3". Наклономер может также быть использован в режиме обычного гидростатического нивелира при открытом перепускном клапане 9. В этом случае уровень жидкости 8 служит гравитационно-чувствительной границей раздела, база измерения равна расстоянию между измерительными трубками, а тяжелая жидкость играет роль гравитационно-чувствительного балласта со своим собственным периодом успокоения, что ускоряет реакцию наклономера на угловое смещение. Используемыми жидкостями, к примеру, могут быть пары тетрабромэтан-вода, сплав вода-трансформаторное масло, ртуть-масло. Использование изобретения позволяет существенно повысить точность измерения угловых смещений в широком диапазоне углов, что особенно важно при инклинометрии технологических каналов ядерных реакторов и буровых скважин.
Формула изобретения

где
- коэффициент поверхностного натяжения второй жидкости;
- плотность второй жидкости;g ускорение свободного падения;
- краевой угол смачивания между второй жидкостью и стенками измерительных трубок. 2. Наклономер по п. 1, отличающийся тем, что диаметр измерительных трубок на выходе капилляра в ближней зоне Хбл пьезоизлучателей, определяемой какХбл=r2 F/C,
где F и C частота и скорость распространения ультразвуковой волны во второй жидкости;
r радиус пьезоизлучателя,
равен диаметру пьезоизлучателя.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3





















