Варактор
Изобретение относится к полупроводниковым приборам, реактивностью которых управляют с помощью напряжения. Сущность изобретения: варактор состоит из рабочей области из однородно легированного полупроводника с омическим контактом, на которой сформирован p-n переход с другим контактом. Рабочая область выполнена в форме усеченной треугольной призмы: стороны основания L1, L2 и D. На боковых гранях рабочей области с основаниями L1 и L2 сформированы p-n переходы и/или барьеры Шоттки с общим контактом, а на грани с основанием D изготовлен омический контакт. Емкость варактора C от обратного смещения U в диапазоне обратных смещений UminU
Umax удовлетворяет условию:
, где S1 и S2 - геометрические площади граней с основаниями L1 и L2 соответственно; R(U) - толщина области пространственного заряда в полупроводнике при обратном смещении U;
o = 8,85
10-12 Ф/м;
- относительная диэлектрическая проницаемость полупроводника. Концентрацию примеси в рабочей области и ее геометрические параметры выбирают так, что при увеличении обратного смещения за счет перекрытия ОПЗ от противолежащих граней изменяются действующие площади обкладок S1(U) и S2(U); при этом необходимый закон изменения S(U) обеспечивают либо соответствующим выбором зависимости высоты грани f(H) от расстояния H, измеренного вдоль L1 и L2 от точки пересечения сторон L1 и L2 со стороной D, либо - при заданной f(H) - выбором зависимости расстояния между L1 и L2 от H, причем размер стороны D удовлетворяет условию: 2R(Uпр)
2R(O), где Uпр - напряжение пробоя. Рабочая область может быть легирована неоднородно. Одна из граней варактора с основанием L1 и L2 представляет собой границу раздела легированный полупроводник - изолирующая подложка. 2 з.п. ф-лы. 9 ил.
Изобретение относится к полупроводниковым приборам, а именно к варакторам (варикапам) полупроводниковым приборам, реактивностью которых можно управлять с помощью напряжения.
Как известно [1] во всех трех базовых элементах полупроводниковой электроники (p-n переходе, барьере Шоттки и структуре металл-диэлектрик-полупроводник) при определенной полярности приложенного напряжения формируется слой полупроводника, обедненный основными носителями заряда, являющийся аналогом диэлектрической прослойки в обычном конденсаторе. Толщина обедненного слоя зависит от напряжения смещения, вследствие чего дифференциальная емкость C полупроводникового прибора может управляться электрическим напряжением U. Основными характеристиками варактора являются коэффициент перекрытия по емкости K Cmax/Cmin и вид зависимости C C(U). Типичная конструкция варактора представляет собой плоскопараллельный сильнолегированный слой полупроводника с одним типом проводимости, сформированный на слаболегированной рабочей области с другим типом проводимости. Обе области снабжены омическими контактами для подачи управляющего напряжения. Задавая соответствующий закон распределения примеси в рабочей области варактора, можно реализовать различные зависимости C C(U). Так, если концентрация примеси в рабочей области меняется по закону Ni(x) Bxm, то [1] C







2R(Uпр

где
Uпр напряжение пробоя в данном полупроводнике при данной концентрации примеси. Кроме того, варактор может иметь неоднородно легированную рабочую область и она может быть выполнена в форме пирамиды или конуса. Кроме того, одна из граней рабочей области с основанием L1 или L2 может представлять собой границу раздела легированный полупроводник-изолирующая (полуизолирующая) подложка. Изобретение заключается в выборе подходящей геометрии рабочей области, а именно такой, чтобы при изменении обратного смещения менялось не только расстояние между обкладками конденсатора, но и площадь обкладок. На фиг.1 изображен варактор с рабочей областью в форме треугольной призмы ABCDEF для двух значений обратного смещения U1 и U2 > U1. При этом действующая площадь обкладок уменьшается с увеличением обратного смещения; на фиг. 2 варактор с рабочей областью в форме усеченной треугольной призмы, в котором зависимость действующей площади обкладок от величины обратного смещения используется для получения заданной вольт-фарадной характеристики; на фиг. 3 представлена конкретная реализация линейного варактора с использованием p-n переходов на кремнии; на фиг.4 изображены зависимости f(H), описывающие геометрию рабочей области линейных варакторов, показанных на фиг.3,6 и 8;
на фиг.5 вольт-фарадная характеристика варактора, показанного на фиг.3; на фиг.6 конкретная реализация линейного варактора с использованием барьера Шоттки на арсениде галлия; на фиг.7 вольт-фарадная характеристика варактора, показанного на фиг.6; на фиг.8 линейный варактор, созданный на диффузионном слое в кремнии с использованием барьера Шоттки; на фиг.9 вольт-фарадная характеристика варактора, показанного на фиг.8. Рассмотрим фиг. 1 на которой изображен варактор с рабочей областью 1 из однородно легированного полупроводника n- или p-типа в форме треугольной призмы ABCDEF с омическим контактом 2 на боковой грани ABFE. На двух других боковых гранях ABCD и EFCD сформирован p-n переход 3 с общим металлическим контактом 4. При использовании барьера Шоттки слой 3 отсутствует, и металл 4 наносится непосредственно на грани ABCD и EFCD рабочей области. На фиг.1 показаны также область пространственного заряда 5, нейтральная область 6 и клеммы 7 для подключения источника обратного смещения. При увеличении обратного смещения, приложенного одновременно к боковым граням ABCD и EFCD через общий для них контакт 4, области пространственного заряда 5 этих граней перекрываются, что и приводит к уменьшению действующей площади обкладок. Действительно, емкость варактора при обратном смещении U (фиг.1а) равна сумме емкостей двух плоских конденсаторов с обкладками A'B'C'D' и E'F'C'D', площади которых зависят от величины обратного смещения (фиг.1б). Назовем площадь фигуры A'B'C'D' действующей площадью обкладки. Дополнительная степень свободы S(U) в формуле для плоского конденсатора:

где S(U) действующая площадь обкладок;
R(U) расстояние между ними;



и позволяет реализовать разнообразные функциональные зависимости C(U) и, в частности линейную. Для вывода необходимых количественных соотношений, обратимся к фиг.2, на которой указаны все необходимые параметры. На фиг. 2 изображен варактор с рабочей областью 1 в форме усеченной треугольной призмы A1A2A3A4A5A6, имеющей в основании равнобедренный треугольник A1A4A5 с длиной основания A1A5, равной D, и длиной боковой стороны A1A4, равной L. На боковой грани A1A2A6A5 изготовлен омический контакт 2 к рабочей области, а на боковых гранях A1A2A3A4 и A3A4A5A6 сформирован барьер Шоттки с общим контактом 4. При подаче обратного смещения между контактами 2 и 4 под гранями A1A2A3A4 и A3A4A5A6 происходит обеднение рабочей области основными носителями заряда на глубину:

где R(U) толщина области пространственного заряда (ОПЗ) в однородно легированном полупроводнике с концентрацией примеси Ni при обратном смещении U;
Uk контактный потенциал;



q 1,6





Если d(U)<H(U) и d(U)<f(H), то применимо приближение плоского конденсатора, и на основании (1) можно записать:

где R(U) дается соотношением (2), а величина H(U) верхнего предела в интеграле находится из условия:
d(U) 2R(U) (5)
при подстановке его в уравнение H F(d). Подставляя (5) в (3), получим:

Для линейного варактора мы должны иметь в некотором диапазоне обратных смещений Umin



Здесь принято, что Cmin C(Umax)


2R(Uпр)

где R(Uпр) толщина ОПЗ при напряжении пробоя Uпр. С другой стороны, размер стороны D должен быть больше, чем 2R(O), так как в противном случае вся рабочая область будет полностью обеднена основными носителями заряда уже при нулевом смещении и варактор будет неработоспособен. Для линейных варакторов имеет место совершенно общая связь между Umin и Umax:

Таким образом, если принять Umin 0, то Umax 2Uk, и минимальный диапазон смещений для линейного варактора составляет 0


0,33Uпр


Из соотношения (4) видно, что выбирая функцию f(H) можно обеспечить любую, наперед заданную спадающую зависимость C=C(U), удовлетворяющую ограничению:

До сих пор мы считали, что рабочая область изготовлена из однородно легированного полупроводника. Однако, это требование не является обязательным. Пусть в каждом сечении H const концентрация примеси зависит от расстояния x, отсчитываемого от поверхности вглубь рабочей области Ni(x,H). Обозначим через R1(H,U) и R2(H,U) толщины областей обеднения, формирующихся у граней A3A4A5A6 и A1A2A3A4 соответственно (фиг.2). Уравнения, определяющие величины R1(H,U) и R2(H,U) имеют вид:


где d расстояние между гранями, измеренное вдоль прямой, параллельной A1A5 при данном значении H. Уравнение (4) при этом перепишется в виде:

где R1(H, U) и R2(H, U) даются соотношениями (11) и (12), а величина верхнего предела в интеграле (13) находится из условия:
d(U) R11(H,U) + R2(H,U)
при подстановке его в уравнение H=F(d). Для линейного варактора мы должны иметь в некотором диапазоне обратных смещений Umin



Здесь, как и в (7), принято, что Cmin C(Umax)









где NO 1





1. В определенном диапазоне обратных смещений Umin


Формула изобретения



где S1 и S2 геометрические площади граней с основаниями L1 и L2 соответственно;
R (U) толщина области пространственного заряда (ОПЗ) в полупроводнике при обратном смешении U;



концентрацию примеси в рабочей области и ее геометрические параметры выбирают так, что при увеличении обратного смещения за счет перекрытия ОПЗ от противолежащих граней изменяются действующие площади обкладок S1 (U) и S2 (U), при этом необходимый закон изменения S (U) обеспечивают либо соответствующим выбором зависимости высоты грани f (H) от расстояния Н, измеренного вдоль L1 и L2 от точки пересечения сторон L1 и L2 со стороной D, либо, при заданной f (H) выбором зависимости расстояния d между L1 и L2 от Н, при этом для обеспечения предельно высокого коэффициента перекрытия по емкости размер стороны D удовлетворяет условию
2R (Uпр)

где Uпр напряжение пробоя в данном полупроводнике при данной концентрации примеси. 2. Варактор по п.1, отличающийся тем, что одна из граней с основанием L1 или L2 представляет собой границу раздела легированный полупроводник изолирующая (высокоомная) подложка. 3. Варактор по пп.1 и 2, отличающийся тем, что рабочая область легирована неоднородно.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9