Волоконно-оптическое мультиплексное устройство для измерения температуры
Сущность изобретения: устройство содержит источник когерентного излучения, импульсный модулятор 2, оптический изолятор 3, волоконно-оптический разветвитель 4, N измерительных каналов, в каждом из которых имеется по крайней мере два резонатора (АВ, ДЕ) Фабри-Перо. Между резонаторами, образованными полупрозрачными отражателями и отрезком одномодового световода, размещен полупрозрачный отражатель С. Длина каждого резонатора кратна целому числу длин наименьшего резонатора. Изобретение позволяет осуществлять измерение температуры в двух и более диапазонах, по числу резонаторов. 2 ил.
Изобретение относится к волоконно-оптическим преобразователям, регистрирующим изменение фазы электромагнитной волны, распространяющейся по оптическому каналу, от температуры.
Распространенная конструкция преобразователя этого типа (датчиков) представляет собой двухплечевое волоконно-оптическое (по типу интерферометра Маха-Цандера) устройство, регистрирующее изменение фазы интерферометрическим методом при наложении сигналов измерительного и опорного каналов. К недостаткам датчиков этого типа относятся зависимость выходного сигнала от нестабильности источника излучения, дрейф чувствительности фотоприемника и параметров волоконно-оптического тракта, а также избыточная длина волоконного световода, обусловленная наличием измерительного и опорного каналов, оптически связанных между собой с помощью соединителя [1] Упростить конструкцию датчика и улучшить его характеристики стало возможным, благодаря разработке технологии изготовления световодов со встроенными в световод полупрозрачными отражателями и применению интерфорометра Фабри-Перо. Из таких устройств наиболее близким к данному изобретению по технической сущности и достигаемому результату является волоконно-оптический интерференционный датчик температуры (ВОИДТ). Чувствительным элементом ВОИДТ является резонатор Фабри-Перо, образованный отрезком одномодового световода между двумя полупрозрачными отражателями из слоев, встроенных в световод. При этом длина резонатора, которая определяет чувствительность и область измеряемых температур в пределах одной интерференционной полосы, практически может быть любой. Как известно, коэффициенты отражения R и пропускания Т когерентного света, распространяющегося по световоду, зависят от набега фазы




r коэффициент отражения от полупрозрачного отражателя C. Из выражения (2) следует, что при формировании отношения сигналов нестабильности источника, дрейф чувствительности фотоприемника и параметров волоконно-оптического трактов исключены. Принцип измерения температуры с помощью предлагаемой мультиплексорной системы состоит в следующем. Пусть в момент времени t1 температура резонатора AB, совпадающая с температурой подложки, равна q1 что соответствует фазе колебаний отраженного излучателя




























где P температурное изменение фазы

L длина плеча. В общем случае температурное изменение фазы в волоконно-оптическом датчике интерферометрического типа определяется соотношением:

где

l длина волны излучателя;
n показатель преломления сердцевины волокна;
d диаметр сердцевины волокна;
Неоднородностью температуры по диаметру можно пренебречь и для чувствительности такого датчика записать более простое выражение:

В большинстве случаев доминирующим оказывается второе слагаемое. Таким образом, выражение (3) можно записать в виде:

или

Из выражения (4) следует, что приращение температуры окружающей среды при известном












целое число), то измерение температуры осуществляется путем счета числа интерференционных полос. Таким образом, возможно решение следующих задач:
измерение температуры в ограниченном диапазоне по амплитуде выходного сигнала в пределах одной интерференционной полосы (аналоговая форма сигнала);
измерение температуры в широком диапазоне по числу интерференционных полос, умноженному на цену деления одной полосы (дискретная форма сигнала);
увеличение разрешающей способности датчика (уменьшение цены деления одной полосы) в заданном диапазоне измерений. Мультиплексное устройство измерения температуры, созданное на этих принципах, обладает возможностью решать широкий спектр задач, например, может быть реализован такой процесс измерения, при котором возможен переход от широкодиапазонных измерений к высокоточным и наоборот. Это достигается тем, что в измерительном канале размещаются последовательно два резонатора разной длины L1, L2. Тогда одному импульсу широкодиапазонных измерений от первого резонатора будут соответствовать L2/L1 импульсов от второго при L2>L1. Для оценки величины












i

где C скорость света;
n показатель преломления волоконного световода. Для того, чтобы фотоприемник зарегистрировал серию из трех импульсов от чувствительного элемента, измерительного плеча с интенсивностями JAB, JС, и JДЕ, необходимо осуществить задержку между этими импульсами. Если tз1 время задержки первого импульса, tз2 время задержки второго импульса, то tз1<t. Аналогично время задержки tзi определяется по формуле:

где l1,2 длины волоконных световодов между полупрозрачным отражателем С и резонаторами АВ и ДЕ, соответственно. Устройство работает следующим образом. Сигнал от источника 1 оптического излучения модулируется с помощью модулятора 2, например, меандром или другим импульсным помехоустойчивым кодом и через оптический изолятор, пропускающий излучение только в одном направлении, поступает на волоконный разветвлитель 4. После разветвителя мощность оптического сигнала (E0)2 распределяется по измерительным плечам, имеющим оптические задержки t1, t2 tN. Из разветвителя 4 световая волна поступает в измерительные плечи. При этом соотношение J1 J2 JN qJ0,
где J0 интенсивность импульса источника излучения;
J1, J2,JN интенсивности импульсов на входе в измерительный канал;
q коэффициент пропорциональности. После отражения от резонатора АВ, полупрозрачного отражателя С и резонатора ДЕ фотоприемник 13 зарегистрирует серию из трех разделенных во времени импульсов с интенсивнестью JАВ, JС, JДЕ. Пренебрегая незначительными потерями в полупрозрачных отражателях и отрезках световодов ВС и CД, имеем:
JАВ qJ0RАВ; JC qJ0(1-RАВ)2r; JДЕ qJ0(1-RAB)2(1-r)2RДЕ. RAB определяется формулой (1);

В начальный момент измерения t1 при температуре окружающей среды










где LAB,ДЕ длины резонаторов AB и ДЕ. Учитывая возможность варьировать длину резонаторов в предлагаемой мультиплексной системе измерения температуры, длины резонаторов AB и ДЕ выбраны так, что выполняется соотношение:

где Z целое число. Так как в интерферометрическом способе измерения температуры наибольшее значение








Отсюда следует, что в предлагаемом устройстве одновременно с измерением температуры в широком диапазоне (с малой чувствительностью) реализуется процесс измерения в узком диапазоне с высокой чувствительностью. Как уже отмечалось выше, при LAB 3 мм диапазон измеряемых температур в пределах одной полосы составит






Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2