Двойные фосфаты ca10.5-1.5xfex(po4)7 (0<x1 в качестве материалов для очистки газовых смесей от водорода
Изобретение относится к производству фосфатов, которые могут быть использованы в качестве материалов для очистки газовых смесей от водорода, общей формулы, приведенной в описании. Соединение получено твердофазным синтезом. Новое соединение проявляет высокую эффективность при очистке газовых смесей от водорода при 600-1500oC. Регенерация отработанного образца при окислении воздуха при 700oC позволяет многократно использовать новое соединение для очистки газовых смесей. 2 табл.
Предлагаемое изобретение относится к неорганической химии, а именно, к новому производному витлокитоподобных фосфатов, которые могут быть использованы в качестве материалов для очистки газовых смесей от водорода, общей формулы: Ca10.5-1.5xFex(PO4)7
(O<x
1) I.
1) I. Патентный поиск показал, что двойной фосфат I синтезирован впервые. Соединение I получено твердофазным синтезом по известному способу [1] Синтез соединения 1 проходит по следующей реакции, например, для x=1 3Ca3(PO4)2+FePO4= Ca9Fe(PO4)7. Пример 1. В алундовый тигель помещали смесь 9,3 г (0,03 моль) Ca3(PO4)2 и 1,5 (0,01 моль) FePO4. Реакционную смесь отжигали в муфельной печи при 900-950oC в течение 48 часов. Состав образующегося материала контролировали при помощи рентгенофазного анализа. При этом в рентгенограмме обнаружены линии, характеризующие витлокитоподобную структуру. Индицирование линий рентгенограммы проведено в предположении тригональной сингонии. Параметры элементарной ячейки уточнены методом наименьших квадратов
, c= 37
10(2)
федоровская группа R3c. Выход продукта 96% Элементарный состав, вес. Найдено, CaO 46,68 Fe2O3 7,37 P2O5 45,95. Известен двойной фосфат Cu0.5Zr 2(PO4)3 II, который может поглощать водород из газовых смесей [2] Недостатком этого соединения является его способность поглощать водород в узком температурном интервале (400-800oC). Эффективность поглощения водорода соединением I определяли методом мессбауэровской спектроскопии и по количеству поглощенного водорода на специально созданной установке при температуре 600-1500oC и разных концентрациях водорода в газовой смеси (c1=3,33 об. H2, c2=6,67 об. H2, c3=10,0 об. H2). Активизируемая газовая смесь состояла из двух компонентов: аргон (азот) и водород, а также CO(CO2) и водород. Пример 2. Приготовление образцов. Соединение 1, тщательно перетертое в агатовой ступке, помещали в кварцевую лодочку в виде порошка или предварительно спрессованной и отложенной при 900oC в течение 3 часов таблетки (
= 90-95% от теоретической). Пример 3. Изучение условий поглощения водорода соединением I проводили на специально созданной установке, основной частью которой является кварцевый реактор; в него был помещен образец известной массы и монометр. Образец нагревали в токе аргона (азота) при определенной температуре в течение 30 мин. Затем в реактор вводили рассчитанное количество водорода в герметичной системе и при помощи манометра контролировали изменение объема в зависимости от температуры. Результаты кинетических исследований представлены в таблице 1. Как видно из таблицы 1, при переходе от начальной концентрации водорода (c1= 3,33 об.) к начальной концентрации (c3=10,0 об. H2), количество поглощенного водорода за 15 мин увеличилось в 2,8 раза. Кроме того, поглощение водорода, независимо от начальной концентрации, прекращалось после 12-минутной выдержки при данной температуре. В таблице 2 представлены экспериментальные данные по изменению объема поглощенного водорода при 800oC. Как видно из таблицы 2 за 12 мин при начальной концентрации водорода c2= 6,67 об. H2 поглощено в 1,6 раза больше, чем при c1=3,33 об. H2. При этом необходимо отметить, что при 800oC поглощенного воздуха в 1,3-1,8 раза больше, чем при 600oC для соответствующих начальных концентрациях водорода. Причем, независимо от начальной концентрации водорода и температуры, равновесие между водородом, поглощенным образцом и оставшимся в газовой смеси, устанавливается в течение 12 мин эксперимента. Аналогичная закономерность соблюдается в интервале температур 900-1500oC. Пример 4. Изучение реакции восстановления Fe(III+) до Fe(II+) в исследуемом образце методом мессбауэровской спектроскопии. Восстановленный образец соединения I изучали методом мессбауэровской спектроскопии. Поскольку в результате восстановления соединения I образуется Ca9Fe3+1-xFe2x+Hx(PO4)7, то содержание водорода в восстановленном образце контролировали с помощью мессбауэровской спектроскопии по содержанию двухвалентного железа в образце. Установлено, что при концентрации водорода в газовой смеси, равной 
100% в образце обнаружено 10%Fe3+ и 90%Fe2+. Таким образом, экспериментальные результаты, полученные при изменении объема поглощенного водорода, полностью совпадают с данными, рассчитанными при помощи мессбауэровской спектроскопии. Получено новое соединение, которое проявляет высокую эффективность при очистке газовых смесей от водорода при температурах 600-1500oC без изменения структуры. При этом в газовой смеси, содержащей 100% водорода, остается 5-10% водорода, в зависимости от температуры: с увеличением температуры очистка газовой смеси проходит более полно.Формула изобретения
Двойной фосфат кальция общей формулы Ca10,5-1,5xFex(PO4)7, где 0 <x < 1 в качестве материала для очистки газовых смесей от водорода.РИСУНКИ
Рисунок 1



















