Способ регулирования влагосодержания в низкотемпературном водородно-кислородном аккумуляторе
Использование: система аккумулирования энергии на основе топливных и электролизных элементов. Сущность изобретения: способ регулирования влагосодержания в водородно-кислородном аккумуляторе путем одновременной продувки рабочим газом топливных и электролизных элементов и подачи в поток газа охлажденной воды с расходом, определяемым выражением: , где G - секундный расход воды, кг/с, nтэ - число ячеек топливных элементов, I - ток заряда и разряда, А.,
t - градиент температуры между элементами и охлаждающей водой. Предлагаемый способ регулирования обладает повышенной надежностью.
Изобретение относится к области электроэнергетики, преимущественно там, где необходимо аккумулирование электрической энергии особенно где аккумулирование энергии осуществляется за счет использования избытка электрической энергии для электролиза воды на газообразные продукты в электрических ячейках (ЭЯ, накопления этих реагентов и последующего их соединения в периоды пика нагрузки для выработки электроэнергии в топливных элементах (ТЭ).
Так как аккумулирование энергии осуществляется за счет, с одной стороны разложения воды, а с другой стороны за счет образования воды, то процесс регулирования влагосодержания в этих системах имеет очень важное значение. В настоящее время влагосодержание в такого типа энергетических системах регулируется одним из наиболее известных и простых способах, при котором влагосодержание поддерживается за счет поддержания постоянного уровня электролита, который находится в жидком состоянии [1] Недостатком этого способа является то, что его нельзя использовать на летательных аппаратах, так как при невозможности и при переменных перегрузках положение уровня жидкости не имеет фиксированного значения. Особо важное значение жидкости не имеет фиксированного значения. Особо важное значение это имеет в устройствах, в которых процессы генерации тока (режим работы ТЭ) и разложения воды (режим работы ЭЯ) происходят в одном устройстве. Именно такие устройства могут быть применены на летательных аппаратах и по аналогии с общеизвестными аккумуляторами их можно назвать водородно-кислородными аккумуляторами. В настоящее время известен и широко применяется способ регулирования влагосодержания в элементах системы, являющийся наиболее близким к изобретению и поэтому взятый за прототип [2] Согласно известному способу топливные элементы (ТЭ) продувают одним из рабочих газов (водородом или кислородом), охлаждают эту парогазовую смесь, пропуская по контуру теплообменника до необходимой температуры, конденсируя при этом необходимое количество воды, избытки которой после этого удаляются из потока. Недостатком технического решения прототипа является невозможность поддержания влагосодержания в рабочем диапазоне при резком изменении нагрузки в устройстве особенно в водородно-кислородном аккумуляторе, так как в нем необходимо то удалять воду, то добавлять. Например, при резком увеличении разряда происходит резкое увеличение влагосодержания, что может привести к затоплению ТЭ и выхода его из строя и, наоборот в режиме зарядки системы электропитания может произойти интенсивное разложение воды на кислород и водород и, как следствие, осушение ЭЯ, что может также привести к выходу из строя системы. Эти недостатки обусловлены инерционностью тепло-массовых процессов, происходящих в системе энергопитания постоянного тока. Таким образом, задачей нового технического решения является создание такого способа регулирования влагосодержания в элементах водородно-кислородного аккумулятора, при котором в рабочих процессах зарядки и разрядки содержание воды оставалось бы в безопасном диапазоне работы системы энергопитания постоянным током. Задача решается совокупностью всех существенных признаков, а именно: продувают одним из рабочих газов, например, водородом топливные элементы и электролизные ячейки водородно-кислородного аккумулятора, и при этом в поток парогазовой смеси на выходе из элементов подают охлажденную воду, с расходом, определяемым выражением:




где: n число элементов (ЭЭ или ТЭ);
I ток заряда или разряда А. Количество тепла, необходимое для конденсации пара равно
Q 9,34




где: r теплота конденсации пара. Конденсация пара происходит за счет смешения с холодной водой, расход которой при этом равен:

где: Cp теплоемкость воды;

Подставляя значение Q получаем:

где: r 2,3

Cp 4,19


где: G секундный расход воды, кг/с;
nтэ число топливных элементов;
I ток заряда или разряда, А;


Предлагаемый способ регулирования влагосодержанием при работе системы реализуется следующей последовательностью действий:
продувают одним из рабочих газов, например, водородом элементы системы, которые термостатируются в пределах от 90o до 96o. Газ, омывая элементы, выносит пары воды из них, (при разряде) при этом количестве паров воды образовавшейся в элементах пропорционально токовой нагрузке в данный момент времени: например I 100A, n 33 расход воды равен 1,11 кг/ч (3,1 г/сек) смешивают на выходе из элементов продуваемый газ с парами воды, с водой, подаваемой из отдельного бака и охлажденной до температуры окружающей среды, например, 20oC, подаваемый расход воды связан соотношением с перепадом температуры между термостатируемыми элементами, температурой охлаждающей воды и токовой нагрузкой.

Формула изобретения

где G расход воды, кг/с;
nтэ число ячеек топливных элементов;
I ток заряда или разряда, А;
