Использование: радиотехника и волоконная оптика, устройства для измерения плотности энергии волн. Сущность изобретения: волоконно-оптический датчик выполнен в виде планарной структуры с токонесущим элементом 1, прикрепленным к диэлектрической подложке 2 с пазом 4, через который проходит световод 5. Участок световода 5, расположенный в пазу 3, покрыт резонансно-поглощающим покрытием 6 и с помощью зеркал 7 и 8 образует измерительный интерферометр. Участок световода 5, расположенный в пазу 4, с помощью зеркал 9 и 10 образует интерферометр Фабри-Перо. Пазы 3 и 4 отнесены друг от друга на некоторое расстояние для исключения воздействия измеряемого СВЧ-поля на интерферометр Фабри-Перо. 1 ил.
Изобретение относится к волоконной оптике и радиотехнике и может быть использовано для измерения плотности энергии волн.
Наиболее близким к изобретению является интерферометрический волоконно-оптический датчик для измерения параметров магнитного поля /1/.
Волоконно-оптический датчик содержит источник излучения, поляризатор, микрообъектив, чувствительный элемент в виде волоконно-оптического интерферометра Фабри-Перо /ВИФП/, измерительную систему, катушку для создания переменного магнитного поля, генератор переменного напряжения.
Волокно ВИФП длиной 10 м обмотано вокруг магнитострикционного ферритового пустотелого цилиндра с внутренним диаметром 4 см, внешним диаметром 5 см и длиной 8 см. Магнитное поле создается катушкой, помещенной напротив магнитострикционного цилиндра и ориентированной вдоль его оси. Подсчитывается количество генерируемых световых импульсов на выходе ВИФП с частотой 50 Гц, воздействующего на магнитострикционный цилиндр. Количество световых импульсов меняется при дополнительном наложении постоянного магнитного поля, оно возрастает с увеличением амплитуды переменного магнитного поля пропорционально ее квадрату. Минимально детектируемое магнитное поле лежит в пределах /0,05 300/

10
-11 Тл/м на частотах от 20 Гц до 10 кГц.
К положительным признакам датчика следует отнести высокую температурную стабильность, вибрационную устойчивость. К недостаткам известного аналога следует отнести ограничения на частотный диапазон измерения переменных магнитных полей, нестабильность источника излучения, дрейф фотоприемника и параметров волоконно-оптического тракта.
Задача, решаемая данным изобретением, заключается в расширении частотного диапазона измерения переменных расчетных полей, повышении точности измерения /исключении нестабильности источника излучения, дрейфа чувствительности фотоприемника и параметров волоконно-оптического тракта/.
Решение поставленной задачи обеспечивается тем, что в волоконно-оптическом датчике измерения параметров магнитного поля, содержащем токонесущий элемент, волоконный световод, контактирующий с токонесущим элементом, волоконный измерительный интерферометр, источник излучения и фотоприемник, волоконный световод закреплен на диэлектрической подложке с пазом и дополнительно снабжен интерферометром Фабри-Перо, размещенным на диэлектрической подложке в дополнительном ее пазу, отнесенном от паза измерительного интерферометра, а также снабжен полупрозрачным отражателем, размещенным между интерферометрами, при этом на противоположную токонесущему элементу сторону диэлектрической подложки нанесено проводящее покрытие, а участок световода, расположенный в пазу, покрыт резонансной поглощающей пленкой из ферро-магнитного материала, а в качестве источника излучения использован импульсный источник оптического излучения.
На чертеже представлена схема волоконно-оптического датчика плотности энергии. На чертеже приведены следующие обозначения: 1 токонесущий элемент, 2 диэлектрическая подложка, 3, 4 пазы, 5 волоконный световод, 6 - резонансно-поглощающее покрытие, 7, 8 зеркала измерительного интерферометра, 9, 10 зеркала интерферометра Фабри-Перо, 11 полупрозрачный отражатель, 12 проводящее покрытие, 13 источник излучения, 14 ответвитель, 15 - фотоприемник.
Волоконно-оптический датчик выполнен в виде планарной структуры с токонесущим элементом 1, прикрепленным к диэлектрической подложке 2 с пазом 4, через которые проходит световод 5. Участок световода 5, расположенный в пазу 3, покрыт резонансно-поглощающим покрытием 6 и с помощью зеркал 7 и 8 образует измерительный интерферометр. Участок световода 5, расположенный в пазу 4, с помощью зеркал 9 и 10 образует интерферометр Фабри-Перо. Пазы измерительного интерферометра и интерферометра Фабри-Перо отнесены друг от друга на некоторое расстояние таким образом, чтобы исключить воздействие измеряемого СВЧ-поля на интерферометр Фабри-Перо. Между зеркалами 8 и 10 в световод 5 встроен полупрозрачный отражатель 11. На противоположную токонесущему элементу сторону диэлектрической подложки нанесено проводящее покрытие 12. Волоконный световод 5 оптически связан с источником излучения 13 и через отвердитель 14 с фотоприемником 15.
Волоконно-оптический датчик плотности энергии работает следующим образом. Пусть на токонесущий элемент 1 падает измеряемая энергия СВЧ-поля. Покрытие 6 за счет эффекта ферромагнитного резонанса поглощает падающую энергию, что приводит к разогреву покрытия 6 и части волоконного световода 5, сопряженного с покрытием 6. Пропорционально мощности, поглощенной этой частью волоконного световода, изменяют температуру, оптическая длина пути волоконного световода, что приводит к сдвигу фазы световой волны в измерительном интерферометре пропорционально этому нагреву, а также температуре подложки и окружающей среды. Часть световода 5, размещенная в пазу 4, не подвергается воздействию поля и набег фазы в интерферометре Фабри-Перо определяется только температурой подложки и окружающей среды. Таким образом, от измерительного интерферометра и интерферометра Фабри-Перо фотоприемник зафиксирует два импульса интенсивностью J
AB и J
DE. В свою очередь, от отражателя 11 фотоприемник зафиксирует третий импульс интенсивностью J
C J
AB=qJ
0R
AB, J
C=qJ
0(1-R
AB)
2r, J
DE=qJ
0(1-R
AB)
2(1-r)
2R
DE, где q параметр ответвителя; J
0 интенсивность импульса на выходе резонатора; R
AB, R
DE коэффициент резонаторов AB и DE соответственно; r коэффициент отражения от полупрозрачного отражателя C.
Алгоритм измерения температуры нагрева световода, ограниченного зеркалами DE по измерению соответствующего набега фаз следующий.
По результатам измерения интенсивности трех импульсов J
AB, J
C, J
DE формируют отношения

и

:

где

;
o температура резонатора окружающей среды;
o+

o температура резонатора AB, совпадающая с температурой подложки вдали от ФП;
o+

o+


температура резонатора DE с учетом температуры ФП.
Таким образом, при совместном решении уравнений относительно

и R
AB определяется набег фазы v
AB(

+

o), при решении уравнений относительно

и R
DE определяется набег фазы v
ДЕ(
o+

o+


), что позволяет определить набег фазы


от ФП, исключая при этом влияние нестабильности температуры окружающей среды и диэлектрической подложки, что повышает точность измерений.
Формула изобретения
Волоконно-оптический датчик плотности энергии волн, содержащий токонесущий элемент, волоконный световод, включающий первый участок, контактирующий с токонесущим элементом и выполненный в виде измерительного интерферометра, источник излучения и фотоприемник, отличающийся тем, что в него введена диэлектрическая подложка, на одной поверхности которой выполнены расположенные на расстоянии друг от друга первый и второй пазы и нанесен токонесущий элемент, а на противоположную поверхность нанесено проводящее покрытие, при этом первый участок волоконного световода расположен в первом пазу и покрыт резонансной поглощающей пленкой из ферромагнитного материала, волоконный световод содержит второй участок, выполненный в виде интерферометра Фабри Перо и размещенный во втором пазу, и полупрозрачный отражатель, размещенный между интерферометрами.
РИСУНКИ
Рисунок 1