Устройство для определения характеристик однократных сверхкоротких импульсов лазерного излучения
Использование: Изобретение относится к области измерительной лазерной техники, связанной с регистрацией, анализом и определением характеристик лазерного излучения, в частности, зависимости интенсивности от времени для однократных сигналов лазерного излучения малой длительности, до 10-10 - 10-14 C. Устройство выполнено в виде трехмерной объемной структуры. Оно содержит два канала управляющих сигналов с ячейками - затворами, причем ячейки - затворы установлены так, что их открывание происходит во взаимно перпендикулярных направлениях, и канал исследуемого сигнала, направление распространения излучения в котором происходит перпендикулярно плоскостям ячеек - затворов. В каналах управляющих сигналов перед ячейками - затворами установлены астигматические телескопические системы расширения пучков, в канале исследуемого сигнала стигматическая телескопическая система. На выходе расположена двумерная система регистрации фотографическая или фотоэлекрическая с матричным приемником для функции корреляции пятого порядка. 3 ил.
Изобретение относится к области измерительной лазерной техники, связанной с регистрацией, анализом и определением характеристик лазерного излучения, в частности, зависимости интенсивности от времени для однократных сигналов лазерного излучения малой длительности, до 10-13 10-14 с.
Известные устройства для определения характеристик однократных сверхкоротких импульсов лазерного излучения основаны на измерении корреляционных функций второго порядка или подобных им функций и анализ их структуры для получения информации о длительности импульса. Для измерения этих функций используются различные физические методы. Один из вариантов заключается в использовании схемы двухлучевого интерферометра с формированием на выходе второй оптической гармоники в нелинейном оптическом кристалле с соответствующим типом синхронизма. Регистрируемый отклик описывается функцией корреляции второго порядка













([1] с. 37 44). Третий вариант схемы основан на использовании скоростных оптических затворов. Для затворов, работающих на линейном электрооптическом эффекте, регистрируется отклик, описываемый функцией корреляции второго порядка

Для затворов на квадратичном электрооптическом эффекте, отклик описывается вырожденной функцией корреляции третьего порядка

зависящей только от одного аргумента и потому не содержащей дополнительной информации по сравнению с функцией корреляции второго порядка. Интервал времен






([1] стр. 57 61). Недостатки этих систем заключаются в том, что они не позволяют провести однозначную интерпретацию результатов без привлечения дополнительной информации. Из-за симметричности функции корреляции второго порядка нельзя получить информацию об ассимметрии сигнала. В спектральном представлении распределения интенсивности нельзя получить информацию о фазах спектральных компонент. Большие возможности открывает применение зависящих от двух аргументов



для которых разработаны методы обработки, позволяющие определить структуру сверхкоротких оптических сигналов в виде зависимости интенсивности сигнала от времени и отмечены возможности снижения роли случайных аддитивных помех ([2] с. 162 163). Известны измерительные устройства для определения характеристик сверхкоротких импульсов лазерного излучения с трехлучевым коррелятором интенсивности, в которых в итоге на выходе регистрируется функция корреляции третьего порядка. Один из вариантов трехлучевого коррелятора интенсивности содержит на выходе нелинейный кристалл для формирования оптической гармоники на частоте 3









1 делитель светового пучка,
2 зеркало,
3 астигматическая телескопическая система,
4 стигматическая телескопическая система,
5 поляризатор затвора,
6 электрооптическая ячейка затвора,
7 изображающая оптическая система,
8 выходная плоскость или плоскость регистрации. Индексы у цифр указывают порядковый номер соответствующего элемента при использовании в устройстве нескольких однотипных элементов. Рассматриваемая схема содержит на выходе электрооптическую ячейку 6, работающую в качестве скоростного затвора [3] Делительная пластинка 1 и зеркало 21 направляют в один канал интерферометра мощный управляющий сигнал E1(t), распространяющийся по электрооптической ячейке 6, выполняющей роль затвора. В другой канал интерферометра с помощью зеркала 2, направляется слабый сигнал E2(t), играющий роль исследуемого. Этот сигнал расширяется телескопической системой 4 и также проходит через электрооптическую ячейку. Скрещенные поляризаторы 51 и 52 являются частью электрооптического затвора. При прохождении управляющего сигнала по ячейке в определенных местах, смещающихся во времени вместе со смещением сигнала, создается эффект двойного лучепреломления, что приводит к открыванию затвора. Исследуемый сигнал в каждый момент времени пересекается с управляющим сигналом в определенной точке затвора с определенным сдвигом во времени. Таким образом, на выходе регистрируется развертка по координате временной картины, определяемой функцией корреляции второго порядка для структуры исследуемого сигнала и функции пропускания затвора, задаваемой в свою очередь интенсивностью управляющего сигнала. Регистрация выполняется для однократного оптического сигнала. Полученная картина с помощью оптической системы 7 регистрируется в выходной плоскости 8 либо фотоэлектрически линейным многоэлементным или матричным приемником, либо фотографически. Недостатком прототипа, как и других устройств, формирующих функцию корреляции второго порядка, является невозможность получить однозначный результат для изменения интенсивности сигнала во времени: симметрия функции корреляции второго порядка не позволяет определить ассимметрию сигнала, в спектре интенсивности сигнала нельзя получить информацию о фазах. Целью изобретения является создание устройства для получения информации о структуре однократного сверхкороткого лазерного сигнала, определяемой распределением во времени интенсивности сигнала, без привлечения какой-либо дополнительной информации. Это достигается формированием в процессе регистрации двумерной корреляционной функции третьего порядка или вырожденной двумерной функции корреляции пятого порядка для одиночного сверхкороткого сигнала излучения независимо от его структуры. В основе оптической схемы устройства лежит трехлучевой коррелятор с объемной трехмерной структурой. Сущность заявляемого технического решения заключается в том, что схема для определения длительности однократных сверхкоротких сигналов лазерного излучения на основе измерения корреляционной функции второго порядка, содержащая два канала: (канал исследуемого сигнала с астигматической телескопической системой и канал управляющего сигнала с ячейкой-затвором), согласно изобретению скомпонована в виде объемной трехмерной структуры и в нее дополнительно введен второй канал управляющего сигнала с ячейкой затвором. Отметим, что оба канала с управляющими сигналами содержат астигматические телескопические системы, а канал исследуемого сигнала содержит стигматическую телескопическую систему. Существенное отличие предлагаемой системы от всех известных заключается в том, что в результате использования трехканальной схемы с трехмерной структурой и скоростных оптических затворов, открывание которых происходит во взаимно перпендикулярных направлениях, а исследуемый сигнал распространяется перпендикулярно плоскостям ячеек-затворов, в выходной плоскости формируется и регистрируется двумерная функция корреляции третьего порядка или вырожденная двумерная функция корреляции пятого порядка для анализируемого сигнала при использовании затворов, работающих на линейном или квадратичном электрооптическом эффекте соответственно, причем информация регистрируется для однократного оптического сигнала произвольной формы. При использовании затворов, работающих на линейном электрооптическом эффекте и дающих при регистрации двумерную функцию корреляции третьего порядка, используется известный метод обработки ([2] с. 163 164, [4]). При использовании затворов, работающих на квадратичном электрооптическом эффекте и дающих при регистрации вырожденную двумерную функцию корреляции пятого порядка, использован дополнительно рассмотренный в заявке метод обработки, позволяющий однозначно получить структуру сигнала в виде зависимости интенсивности от времени. Предлагаемое техническое решение иллюстрируется фиг. 2, на которой представлена оптическая схема коррелятора с объемной трехканальной структурой. Пунктирные линии подчеркивают объемную структуру схемы. Предлагаемая схема для формирования трех каналов в объемной структуре содержит делители световых пучков 11 12, выполненные в виде полупрозрачных зеркал или делительных кубиков и зеркала 21 26. Делители световых пучков выполнены так, что они обеспечивают большую интенсивность управляющих сигналов E1(t) и E2(t) и малую интенсивность исследуемого сигнала E3(t). В двух каналах с управляющими сигналами установлены астигматические телескопические системы 31, 32, осуществляющие расширение световых пучков в одном направлении с помощью цилиндрической оптики и формирующие плоские пучки, направляемые в ячейки-затворы 61, 62 во взаимно перпендикулярных направлениях. Ячейки-затворы могут работать на линейном электрооптическом эффекте (эффект Поккельса( [5] на квадратичном электрооптическом эффекте (эффект Керра) [3, 6] или на основе эффекта насыщающегося поглощения [7 9] Для работы затворов на основе электрооптических эффектов в систему введены поляризаторы 51 53, причем поляризаторы 51 и 53 параллельны, а 52 им перпендикулярен. Для затворов, работающих на основе насыщающегося поглощения поляризаторы не требуются. В канале с исследуемым сигналом E3(t) установлена стигматическая телескопическая система 4, осуществляющая расширение пучка для освещения всей площади ячеек-затворов с помощью сферической оптики. Исследуемый сигнал направляется перпендикулярно плоскости ячеек-затворов. Оптическая система 7 дает в выходной плоскости 8, являющейся плоскостью регистрации, изображение структур ячеек-затворов, проэкспонированное за все время регистрации ts. Регистрация может выполняться либо в простейшем случае фотографически, либо фотоэлектрически на матричном приемнике. Схема работает следующим образом. Исследуемый импульс излучения
E(t) =



двумя делительными пластинками 11, 12 и зеркалами 21 26 направляется в три канала интерферометра, причем два сигнала
E1(t+






и
E2(t+






предназначены для управления ячейками-затворами 61, 62 и характеризуются высокими напряженностями полей и временными задержками, связанными с их распространением в плоскостях ячеек




где


E3(t)=












где r1 и r2 электрооптические постоянные, n1 и n2 начальные показатели преломления материалов ячеек. Рассмотрим действие первой ячейки-затвора. Анализируемое поле представляется в виде двух составляющих, соответствующих обыкновенному и необыкновенному лучам

где








где l1 толщина ячейки в направлении распространения анализируемого сигнала. Ячейка должна быть достаточно тонкая, чтобы за время распространения анализируемого светового сигнала через ячейку затвор не происходило заметного изменения показателя преломления за счет управляющего сигнала, то есть не происходило снижения временного разрешения. В частности, для временного разрешения


показатель преломления материала ячейки, то есть для



где постоянные А1 и


Полученное поле можно представить как результат воздействия на анализируемое излучения с амплитудой






где

Dv2o= (




где l2 размер ячейки в направлении распространения анализируемого сигнала. После третьего поляризатора 53, скрещенного со вторым, имеет место

где постоянные А2 и

A2= 2r2n32A1









Дополнительно к воздействию затвора, работающего на первой ячейке 61, в данном случае имеет место воздействие второго затвора, работающего на второй ячейке 62, с амплитудным пропусканием T2(t+



Соотношения интенсивностей сигналов I1(t), I2(t) и I3(t) в каналах схемы можно описать коэффициентами r1, r2 и r3
I1(t)=r1I(t), I2(t)=r2I(T), I3(t)=r3I(t). Получаем, что на выходе регистрируется функция корреляции третьего порядка для распределения во времени интенсивности исследуемого сигнала. Анализ полученной картины, представляющей функцию корреляции третьего порядка для ячеек затворов с линейным электрооптическим эффектом, выполняется с использованием известных методов [2] с. 163-164. [4] В зарегистрированной картине для


Анализ зависимости I(






Амплитуды спектральных компонент сигнала определяются с точностью до постоянной I










Это позволяет определить










где






При введении коэффициентов r1, r2 и r3, описывающих соотношения интенсивностей сигналов I1(t), I2(t) и I3(t) в каналах схемы, распределение интенсивности имеет вид, близкий по структуре к функции корреляции пятого порядка

при выполнении условий






С учетом вида интегралов, описывающих преобразование Фурье для интенсивности I(t+










Анализ зависимости I(







где














и

где

определяются по измеренному распределению интенсивности в функции корреляции пятого порядка I(5)(






где


Результат описывается более сложной функцией, чем в предыдущих вариантах схемы, но общий характер соответствует корреляционной функции третьего порядка для I3(t), TII(t+


Выражение для I(



Регистрируемое распределение интенсивности с точностью до членов второго порядка малости и несуществующих постоянных коэффициентов будет описываться формулой

Переход к спектральному представлению в выражении для интенсивности I(



Исключим из рассмотрения области с






Анализ зависимости функции I







где


Анализ зависимости мнимой части производной I










где

Величины


















пренебрежимо мала или равна нулю. Следует отметить, что это не относится к функции I




Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3