Способ очистки отработавших газов и устройство для его осуществления
Использование: двигателестроение, устройства для очистки отработавших газов. Сущность изобретения: способ и устройство для очистки отработавших газов, в частности отработавших газов дизельных двигателей, когда отработавшие газы пропускают через канал (36a) керамического корпуса (36), в этом канале (36a) по существу поперек направления потока создают электрическое поле, при этом осевшие на стенках (36a) частицы сажи окисляются свободными осевшими на кислород ионами. При этом выбирают напряженность электрического поля в заданных пределах с учетом геометрии сечения каналов для прохода отработавших газов. 2 с. и 11 з.п. ф-лы, 5 ил.
Изобретение касается способа очистки отработавших газов, в частности отработавших газов дизельных двигателей.
При очистке отработавших газов от аэрозолей, в частности от сажи, часто возникает проблема из-за того, что частички сажи откладываются на фильтре и сокращают его проницаемость, поэтому сажу время от времени надо выжигать. С этой целью при использовании традиционных фильтров к ним необходимо подводить соответствующие количества тепла, для чего требуются температуры порядка 600oC. При работе с отработанными газами дизелей надо еще учитывать возможность добавления к топливу присадок, образующих в камере сгорания молекулярную окись железа (III), которая сбивает температуру сгорания сажи ниже 400oC, благодаря чему тепла двигателя, т.е. тепла отработанных газов, достаточно для сжигания осевшей сажи. Однако эти присадки вызывают повышенный расход топлива, а окись железа (III) очень долго остается во взвешенном состоянии и возникает проблема в связи с ее влиянием на окружающую среду. Известен фильтр для очистки газов, в котором сжигаемые частички должны окисляться посредством коронного разряда. Предполагается, что оседающие частички откладываются на одном из электродов, который выполнен в виде ловушки для частиц. При этом между электродами должен происходить интенсивный коронный разряд, при котором создается ионизированный кислород. В таком устройстве неизбежно возникает интенсивный искровой промежуток, который наряду с сильной нагрузкой материала приводит к увеличению расхода электроэнергии. Такие фильтры не пригодны для длительного использования в автомобилях [1] Известно, что отработанные газы сначала ионизируют, а затем пропускают через канал в керамическом корпусе, где по существу поперек направления потока создается электрическое поле. При этом осевшие на стенках канала частички сажи сгорают при сравнительно высоких температурах. Такие температуры в некоторых случаях создавать трудно [2] Другие известные устройства основаны на том принципе, что частички сажи после их соединения время от времени должны сжигаться посредством подвода соответствующего количества тела, или на том, что частички сажи спекаются посредством электрического поля, а потом отделяются в циклонном сепараторе и, наконец, смесь для сжигания подается в цилиндры двигателя внутреннего сгорания. Известен также способ, согласно которому отработанные газы пропускают через пористый керамический корпус, который задерживает попавшие в него частицы. И хотя предусмотрены различные мероприятия для удаления или устранения частиц сажи, такие фильтры имеют неприемлемо высокое аэродинамическое сопротивление. В частности, в области неполной нагрузки это приводит к образованию отложений сажи, которые способствуют значительной потере давления. Такие решения предусматривают сотовые или ячеистые фильтры, которые состоят из продолговатых наложенных друг на друга фильтрующих ячеек, которые преимущественно имеют квадратное сечение и попеременно со стороны выхода и со стороны входа перекрыты заглушками. Фильтруемые отработанные газы могут пропускаться через образованную двумя такими фильтрующими ячейками стенку, причем аэрозоли не проходят через поры и оседают в той ячейке, которая открыта со стороны входа. Такой фильтр частично изготавливается из температуростойкого керамического материала и преимущественно покрыт или легирован каталитическими веществами, вследствие чего при избытке кислорода уже при температуре ниже 600oC это приводит к сгоранию осевших частиц сажи. Поскольку такие температуры могут достигаться только в режиме полного газа, в промежуточных периодах создается существенное противодавление, которое недопустимым образом снижает мощность двигателя [3] Недостаток известных решений заключается в том, что для сжигания осевшей сажи требуется расходовать очень большие количества тепла и при использовании циклонных сепараторов требуются существенные аппаратные затраты и повышенный расход энергии на эксплуатацию. Задачей изобретения является устранение этих недостатков и разработка способа, который бы простейшим образом обеспечивал не только осаживание частиц сажи, но и полное их уничтожение, и чтобы при этом обеспечивался длительный срок службы при хорошей доступности для обслуживания. Эта задача решается посредством способа, согласно которому отработавшие газы пропускают через канал керамического корпуса, а в этом канале по существу поперек направлению потока создают электрическое поле, при этом осевшие на стенках канала частички сажи окисляются свободными или осевшими на кислород электронами. В окислении могут участвовать также и положительные ионы, в частности при разряде переменного тока. Существенным в изобретении является то, что в канале керамического тела возникает электронная корона или автоионизация. Искры в предлагаемом способе не возникают. Однако если в каком-то месте должно возникнуть искрение, то электрическое поле в его окружении сильно падает за счет высокого сопротивления керамического материала, так что искрение сразу затухает. Благодаря этому остигается очень низкий температурный предел для сжигания сажи, так что высокая эффективность очистки обеспечивается даже при частичной нагрузке. В предпочтительном варианте способа частички сажи, содержащиеся в отработанном газе, до попадания в канал керамического корпуса заряжаются отрицательно при помощи разрядного электрода. Это облегчает оседание частичек сажи в канале керамического корпуса. Целесообразно выбирать электрическое напряжение настолько высоким, чтобы в канале керамического корпуса посредством высокого электрического поля имел место разряд, а именно посредством испускания эмиссионных электронов на керамическую стенку. При этом достигается оптимальная рабочая точка фильтра. Отработанные газы преимущественно пропускаются сначала через ионизационный канал, а затем через по крайней мере один осаждающий канал. Благодаря этому как для ионизации, так и для оседания создаются оптимальные условия. Особенно благоприятным исполнением является такое, когда как ионизационный канал, так и осаждающие каналы в виде открытых в обе стороны каналов располагаются в отдельном керамическом корпусе. Благодаря этому возможно исполнение, особенно экономящее площадь. Разность потенциалов электрического поля может составлять от 3 до 30 кВ, преимущественно от 5 до 20 кВ. Напряженность электрического поля должна составлять от 100 до 1000 В/мм, преимущественно от 200 до 500 В/мм. Этим достигается оптимальная доля отделения. Согласно варианту предлагаемого способа катализатор в воздухонесущей форме может периодически вводиться в поток отработавшего газа. Долговременная эффективность предлагаемого фильтра может быть существенно улучшена за счет того, что катализатор в воздухонесущей форме периодически вводится в поток отработавшего газа. В простейшем случае это может осуществляться в рабочем порядке путем использования резервуара, из которого управляемым образом примерно через каждые 50 часов работы двигателя выводят определенное количество катализатора в виде аэрозоля. Во время ввода катализатора полярность электрического поля преимущественно меняется. Преимущественно катализатор вводят тогда, когда температура потока отработавшего газа за время t становится меньше AoC, при этом t находится между 20 и 60 мин, а A менее 500oC, преимущественно менее 300oC. Только после длительной работы при низких температурах может потребоваться обновление слоя катализатора. Посредством зависящего от температуры регулирования можно добиться оптимальной величины сепарации при небольших количествах добавок катализатора. Хорошо, когда полярность электродов с целью очистки время от времени меняет знак. После длительной эксплуатации может иметь место вредное отложение сажи на стороне отрицательного электрода. Посредством кратковременного подвода положительного заряда он бомбардируется отрицательными частицами и тем самым очищается. Изобретение, кроме того, касается устройства для очистки отработанных газов, в частности отработанных газов дизельных двигателей, содержащего керамический корпус хотя бы с одним каналом, через который пропускают отработанные газы, электроды для создания электрического поля, пронизывающего керамический корпус и ориентированного поперек оси канала. Это устройство отличается тем, что критерий E, учитывающий геометрию сечения канала и удельное электрическое сопротивление материала керамического корпуса и отвечающий соотношению





и, следовательно, в этом случае больше 1. При этом можно создать проемы с отношением ширины, измеренной в направлении перпендикулярно направлению поля, к высоте, измеряемой в направлении поля, от 3:1 до 10:1, причем с ростом по отношению сопротивления керамического корпуса при прочих равных критериях, в частности, толщины d стенки, растет. Благодаря отрицательному коронирующему электроду или при достаточной напряженности поля обеспеченной отрицательно заряженной коронирующей шероховатой поверхности стенки, разность потенциалов между коронирующим электродом и противоположно заряженным электродом при комнатной температуре на 1 см межэлектронного состояния в первом случае составляет 1-3 кВ и во втором случае разность потенциалов между противоположными стенками составляет на 1 см от 4 до 8 кВ. Если противоположные стенки являются очень гладкими, то при комнатной температуре вместо отрицательной короны возникает автоионизация газа при напряженности поля между 10 и 20 кВ/см, а при температурах более высоких уже при 5-10 кВ/см. Вариант исполнения согласно фиг. 3 тем отличается от исполнения согласно фиг. 2, что стенки 106', 106'', 106''', 106IV, разделяющие ряды каналов 36a друг от друга, проходят зигзагами, причем противоположные друг другу и отделенные друг от друга в направлении поля стенки 106I, 106II, 106III, 106iV одного канала 36a размещаются наклонно к плоскости, расположенной перпендикулярно направлению 102 поля. В этом варианте исполнения по сравнению с вариантом исполнения согласно фиг. 2 выявляется большее удлинение линии тока, а формфактор


где a > x. В этом варианте исполнения в средней зоне сечения канала 36a создается высокая напряженность поля, которая, однако, очень неоднородно распределяется по ширине канала 36a. Это приводит в средней зоне сечения канала 36a уже при сравнительно малых напряженностях поля в керамическом корпусе порядка 5 кВ/см к зарядным коронам и, следовательно, к образованию O- и O-2 ионов, которые обеспечивают сгорание отложенной на фильтре сажи при сравнительно низких температурах от 300oC и ниже. Представленный на фиг. 4 вариант исполнения отличается от представленного на фиг. 3 только тем, что стенка 105, проходящая в направлении 102 поля, короче нормального расстояния x между соединительными точками 104. Этим достигается относительно варианта исполнения согласно фиг. 3 при прочих одинаковых размерах хотя и меньший геометрический формфактор






должен составлять не менее 107, а преимущественно не менее 108, причем P это удельное электрическое сопротивление керамического материала при 600oC, в см,


где l длина образованной за счет приложенного к высоковольтным электродам напряжения и конечного удельного сопротивления керамического материала линии тока между двумя обращенными друг от друга точками соединения 104, 104' стенок канала 36a, определяющих высоту канала в направлении 102 поля, с прочими стенками 106, ограничивающими сам канал, простирающимися преимущественно перпендикулярно направлению поля, при этом у выполненных в виде участков стенок 53, 55, разделенных на несколько рукавов 53, 53', 553, 554, эти рукава, представляющие с точки зрения сопротивления параллельное включение, надо учитывать по их сопротивлениям и использовать с длиной прочих стенок, соответствующей приведенному сопротивлению рукава, а x это измеренное в направлении 102 поля нормальное расстояние между этими соединительными точками 104'.
Формула изобретения

составляет по меньшей мере 107 Ом, предпочтительно 108 Ом,
где Р удельное электрическое сопротивление материала керамического корпуса при 600oС, Ом/см;

d ширина или толщина разделяющих осаждающих каналов стенок, см,
при этом геометрический формфактор определяется из соотношения

где l средняя длина линии тока между электродами, образованная в керамическом материале;
Х расстояние между электродами. 4. Устройство по п. 3, отличающееся тем, что осаждающие каналы в направлении поперечного сечения керамического корпуса имеют длину стенок между двумя обращенными друг от друга точками соединения стенок, определяющих высоту осаждающего канала в направлении создания высоковольтными электродами электрического поля, по сравнению с другими, ограничивающими тот же осаждающий канал стенками, больше, чем измеренное в направлении поля нормальное расстояние между этими соединительными точками, причем напряженность электрического поля при комнатной температуре находится в диапазоне от 10 до 20 кВ/см. 5. Устройство по пп. 3 и 4, отличающееся тем, что стенки, расположенные между рядами осаждающих каналов, граничащими друг с другом в направлении поля, имеют зигзагообразную форму, причем разнесенные друг от друга в направлении поля и с противоположных сторон ограничивающие соответствующий осаждающий канал участки стенки встречно наклонены относительно перпендикулярной к направлению поля плоскости или плоскости цилиндра. 6. Устройство по пп. 3 и 4, отличающееся тем, что стенки керамического корпуса, которые опеределяют измеренную в направлении поля высоту осаждающих каналов, проходят участками под углом к направлению поля. 7. Устройство по п. 4, отличающееся тем, что определяющие высоту осаждающих каналов стенки имеют форму меандра или выполнены в форме змеевика. 8. Устройство по одному из пп. 3 6, отличающееся тем, что наряду с каналами, выполненными в виде осаждающих каналов, предусмотрен по меньшей мере один открытый с обеих сторон ионизационный канал. 9. Устройство по п. 8, отличающееся тем, что ионизационный канал расположен параллельно осаждающим каналам. 10. Устройство по одному из п. 8 или 9, отличающееся тем, что керамический корпус выполнен цилиндрическим, причем ионизационный канал расположен в зоне оси цилиндра, а осаждающие каналы расположены вокруг ионизационного канала. 11. Устройство по одному из пп. 8 10, отличающееся тем, что стенки осаждающих каналов покрыты катализатором, способствующим окислению углеводородов. 12. Устройство по пп. 3 11, отличающееся тем, что керамический корпус образован по меньшей мере из двух плит, расположенных поперек направления поля, и каналы состоят из промежуточных полостей между плитами. 13. Устройство по одному из пп. 3 12, отличающееся тем, что внутренние стенки осаждающих каналов имеют шероховатость поверхности по меньшей мере 1 мкм, предпочтительно 2 мкм.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5