Лазерная электростанция
Использование: лазерная электростанция относится к системам, использующим электромагнитные волны, иные чем радиоволны, а именно к электростанциям. Сущность изобретения: лазерная электростанция содержит последовательно соединенные лазерное устройство отбора энергии электромагнитного поля Земли 5, преобразователь тока электрического разряда в переменный ток 6, трансформатор 7, стабилизатор 8 и устройство накачки 9, соединенное с входом лазерного устройства 5. Выходом электростанции является выход стабилизатора переменного напряжения 8. 6 з.п. ф-лы, 5 ил.
Изобретение относится к устройствам, использующим природные источники электричества, а именно к электростанциям, использующим энергию электрического поля Земли.
Предшествующий уровень техники. Известна наземная электростанция, использующая энергию электрического поля Земли и содержащая последовательно соединенные [1] устройство непрерывного отбора энергии у электрического поля Земли, выполненное в виде двух пространственно разнесенных на поверхности Земли генераторов
фиг.1 поясняет принцип отбора энергии у электрического поля Земли;
фиг.2 конструкцию лазерной электростанции (функциональная схема);
фиг. 3 примеры конструктивного исполнения лазерного устройства отбора энергии у электрического поля Земли;
фиг. 4 примеры конструктивного исполнения преобразователя тока электрического разряда в переменный ток;
фиг.5 осцилограммы, поясняющие принцип работы электростанции. На фиг.1, 4 обозначены:
1 Солнце (источник световой энергии);
2 Ионосфера (преобразователь световой энергии Солнца в электрическое поле Земли);
3 Земля (положительно заряженнная "обкладка" сферического конденсатора "Земля-Ионосфера);
4 Лазерный луч (токопровод);
5 Лазерное устройство отбора энергии у электрического поля Земли:
5.1. токосъемник, устройство соединения плазменного токопровода 4 с преобразователем 6;
5.1.1. графитовая пластина с центральным отверстием (графитовое кольцо);
5.1.2. металлизированное покрытие (микронный слой металла);
5.1.3. кварцевое стекло;
5.1.4. рефлектор;
5.1.5. контррефлектор;
5.2 коллиматор (оптическая фокусирующая система);
5.3 лазер;
6 преобразователь тока электрического разряда в переменный ток;
6.1 конденсатор;
6.2 катушка индуктивности;
6.3 силовая шина (токопровод);
6.4 электрический разрядник;
7 трансформатор;
8 стабилизатор напряжения;
9 устройство накачки лазера. Лучший вариант осуществления изобретения. Лазерная электростанция содержит последовательно соединенные лазерное устройство 5 отбора энергии у электрического поля Земли, преобразователь 6 тока электрического разряда в переменный ток, трансформатор 7 и стабилизатор напряжения 8, выход которого непосредственно соединен с выходом электростанции и через устройство накачки с входом лазерного устройства 5. Лазерное устройство 5 содержит лазер 5.3 с устройством накачки 9. На оптической оси лазера 5.3 последовательно установлены оптическая фокусирующая система 5.2 и токосъемник 5.1. В простейшем случае (фиг.3а) токосъемник 5.1 выполнен в виде графитового кольца с внутренним диаметром, близким к диаметру лазерного луча 4. Для уменьшения дифракционных искажений лазерного луча 4 внутренний диаметр графитового кольца может быть увеличен. При этом для обеспечения электрического контакта токосъемника 5.1 с плазменным образованием в лазерном луче 4 графитовое кольцо 5.1.1 (фиг.3б) снабжено кварцевым стеклом 5.1.3. На кварцевое стекло 5.1.3 со стороны графитового кольца 5.1.1 нанесено металлизированное покрытие 5.1.2. Толщина металлизированного покрытия 5.1.2 выбрана из условия пропускания лазерного излучения и обеспечения электрического соединения токосъемника 5.1 с токопроводом 4. Для длинноволнового ионизирующего излучения лазера 5.3 токосъемник 5.1 может быть выполнен в виде линзы Кассегрена (фиг.3в). Выход токосъемника 5.1 соединен с преобразователем 6 с помощью токопровода 6.4. Согласно фиг.4 "а" преобразователь 6 выполнен в виде токового трансформатора, образованного катушкой индуктивности и токопровода 6.4, проходящего через ось указанной катушки. Первичная обмотка 6.2 катушки индуктивностью "L" нагружена на конденсатор емкостью "С" и образует вместе с последним колебательный контур, настроенный на промышленную частоту электростанции, например:

Соотношение витков первичной 6.2 и вторичной 6.3 обмоток катушки индуктивности выбрано из условия исключения шунтирующего влияния трансформатора 7 на добротность резонансного контура "LC" преобразователя 6. В другом варианте исполнения преобразователя 6 (фиг.4 "б") токопровод 6.3 соединен непосредственно с конденсатором 6.1 и первичной обмоткой 1 катушки индуктивности 6.2. При этом для исключения перенапряжения контура "LC", последний снабжен разрядником 6.4. Вторичная обмотка 1 катушки индуктивности 6.2 преобразователя 6 соединена со входом трансформатора 7. Коэффициент трансформации трансформатора 7 выбран из условия обеспечения заданного значения напряжения на выходе электростанции "Uвых". Выход трансформатора 7 соединен со входом стабилизатора 8. Стабилизатор 8 выполнен в виде индуктивности стабилизатора переменного напряжения. Магнитная насыщенность сердечников стабилизатора 8 выбрана из условия сглаживания затухающих колебаний контура "LC" преобразователя 6 между импульсами электроразряда электрического поля Земли. Выход стабилизатора 8 соединен с выходом электростанции и с входом устройства накачки 9 лазера 5.3. Устройство накачки 9 выполнено в виде емкостного или магнитного накопителя энергии, соединенного со входом лазера 5.3. Частота и плотность мощности излучения лазера 5.3 выбраны их условия создания слабоионизированной плазмы, обеспечивающей замыкание нижнего слоя ионосферы 2 на Землю 5.3 через канал 4 (фиг.1). При этом длительность и частота следования лазерных импульсов выбраны из условия получения максимальной мощности лазерной электростанции при обеспечении стабильности электрического поля Земли, близкой к естественным значениям. Работа лазерной электростанции состоит в следующем:
От внешнего источника энергопитания, например от дизельного генератора, на вход "Запуск" устройства накачки 9 подается переменное напряжение промышленной частоты fo. В устройстве 9 формируется импульс накачки (фиг.5 "а"), который подается на вход лазера 5.3. Под действием этого импульса лазер 5.3 генерирует излучение (фиг.5 "б"), которое проходит через оптическую систему 5.2. Коллимированное излучение с выхода оптической системы 5.2 проходит через отверстие токосъемника 5.1 и распространяется в направлении ионосферы 2 (фиг. 1). При этом при взаимодействии лазерного излучения с составляющими газов атмосферы на пути распространения лазерного излучения образуются носители тока, (электроны, положительные и отрицательные ионы) с концентрацией, достаточной для образования "стриммера" (ионизационной волны) и перемещения его в течение времени



где То период затухающих колебаний. Колебания с изменяющейся амплитудой (фиг.6 "г") контура "LC" снимаются со вторичной обмотки

Формула изобретения

где f0 промышленная частота электростанции. 7. Электростанция по п. 1, отличающаяся тем, что преобразователь тока электрического разряда в переменный ток выполнен в виде резонансного контура, нагруженного на электрический разрядник и соединенного с выходом преобразователя через индуктивную связь, причем резонансная частота контура выбрана равной требуемой промышленной частоте электростанции.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5
Похожие патенты:
Изобретение относится к физике, в частности к электротехническим устройствам для использования атмосферного электричества
Изобретение относится к области использования атмосферного электричества
Устройство для очистки от пыли // 919167
Гидроэлектрическая установка // 80945
Способ борьбы с туманами и тучами // 22820
Изобретение относится к использованию атмосферного электричества
Изобретение относится к области малой электроэнергетике, в которой используются природные источники электричества и может быть применено при строительстве экологически чистых природных электростанций для электропитания небольших промышленных объектов и населенных пунктов
Изобретение относится к электротехнике и предназначено для бесперебойного обеспечения энергией автономного электрооборудования, например автоматических метеостанций или космических зондов
Изобретение относится к области использования природных источников электричества и может быть использовано для получения электроэнергии в любой точке Земли, в любое время года и суток, при любых погодных условиях, а при грозовой деятельности - со значительным эффектом в течение короткого времени
Изобретение относится к устройствам, использующим природные источники электричества, а именно к устройствам, использующим энергию ионосферы Земли
Устройство для электромагнитной разведки пространства на разных высотах в рамках биосферы земли // 2304793
Изобретение относится к измерительной технике и может быть использовано для обнаружения изменения природного (фонового) электростатического поля в биосфере Земли
Способ получения электрической энергии // 2305917
Изобретение относится к способу получения альтернативного вида электроэнергии из электростатического и/или электромагнитного скопления слабовзаимодействующих элементарных частиц (микрочастиц), образующих энергетические кластеры в вихревых структурах природных явлений
Изобретение относится к области приборостроения и может быть использовано для накопления электрической энергии
Многофункциональный воздушный шар // 2333134
Изобретение относится к области летательных аппаратов легче воздуха
Изобретение относится к области приборостроения и может быть использовано для накопления электрической энергии в любой точке Земли и в любое время, для обеспечения эффективной молниезащиты