Термоэлектрическая батарея холодильного устройства
Использование: в холодильной технике, в бытовых и промышленных холодильниках. Сущность изобретения: термоэлектрическая батарея содержит последовательно соединенные термоэлементы с горячими и термоэлементы с холодными спаями, блок электропитания и конденсаторы, установленные между термоэлементами, а также между последними и блоком питания. Каждый термоэлемент снабжен вторым спаем, подключенным к блоку электропитания параллельно первому спаю с противоположным расположением материалов спая, и двумя диодами, установленными последовательно спаям в каждой ветви электрической цепи термоэлемента и имеющим противоположное относительно друг друга расположение анодов и катодов. Блок электропитания выполнен в виде источника переменного тока. Диоды в ветвях цепи могут быть установлены с противоположным относительно друг друга расположением анодов и катодов или идентично. 2 з.п. ф-лы, 5 ил.
Изобретение относится к холодильной технике, в частности, к конструкциям термоэлектрических элементов и батарей.
Известны термоэлектрические элементы, включающие холодные и горячие спаи, последовательно соединенные между собой и снабженные источником постоянного тока. Недостатком указанных термоэлектрических элементов является наличие значительного теплообмена по материалу термоэлектрической батареи и ее монтажным элементам, что приводит к необходимости использовать для питания значительные токи и снижает КПД термоэлектрической батареи. Наиболее близким аналогом является термоэлектрическая батарея для производства холода [1] включающая последовательно соединенные между собой холодный и горячий спаи, снабженные источником постоянного тока. Термоэлектрическая батарея снабжена устройством, обеспечивающим разрыв теплового потока между холодной и горячей стороной термоэлектрической батареи по материалу ее монтажных элементов на время в течение которого электропитание отключено. Основным недостатком аналога является наличие постоянного теплового потока по материалу термоэлемента и по материалу монтажных элементов в течение времени, когда электропитание термоэлектрической батареи включено. Указанные выше недостатки снижают КПД термоэлектрической батареи. Кроме того устройство может быть использовано только в нестационарных термоэлектрических охладителях, что ограничивает область его применения. Задачей предлагаемого изобретения является создание термоэлектрической батареи с высоким КПД и более широкой областью применения. Поставленная задача решается тем, что термоэлектрическая батарея холодильного устройства, включающая последовательно соединенные термоэлементы с горячими и термоэлементы с холодными спаями и блок электропитания согласно изобретению батарея снабжена конденсаторами, установленными между термоэлементами, а также между последними и блоком питания, а каждый термоэлемент снабжен вторым спаем, подключенным к блоку питания параллельно первому спаю с противоположным расположением материалов спая и двумя диодами, установленными последовательно спаям в каждой ветви электрической цепи термоэлемента и имеющими противоположное относительно друг друга расположение анодов и катодов, при этом блок электропитания выполнен в виде источника переменного тока. В первом варианте выполнения термоэлектрической батареи в ветвях электрической цепи двух ближайших последовательно размещенных термоэлементов диоды установлены с противоположным относительно друг друга расположением анодов и катодов (фиг. 1). Такое выполнение термоэлектрической батареи позволяет как нагреватьтак и охлаждать объект. Во втором варианте выполнения термоэлектрической батареи в ветвях электрической цепи двух ближайших последовательно размещенных термоэлементов диоды установлены идентично (фиг. 2). Такое выполнение термоэлектрической батареи позволяет работать либо в режиме охлаждения (холодильник), либо в режиме нагрева. Конденсаторы в электрической цепи между термоэлементами и блоком электропитания обеспечивают постоянный тепловой разрыв между горячими и холодными спаями термоэлементов, что устраняет переток тепла между ними и, как следствие, повышает КПД устройства. Введение вторых холодных и вторых горячих спаев в термоэлементах, а также выполнение источника электропитания в виде источника переменного тока обеспечивает функционирование термобатареи в непрерывном режиме. На фиг. 1 представлена схема первого варианта выполнения термоэлектрической батареи холодильного устройства. На фиг. 2 представлена схема второго варианта выполнения термоэлектрической батареи холодильного устройства. На фиг. 3 представлен график зависимости I=I(t) для тока через верхнюю ветвь холодного термоэлемента и нижнюю ветвь горячего термоэлемента. На фиг. 4 представлен график зависимости I=I(t) для тока через нижнюю ветвь холодного термоэлемента и верхнюю ветвь горячего термоэлемента. На фиг. 5 показана зависимость I=I(t) для тока на входе и выходе термоэлементов 1 и 2. В первом варианте выполнения термоэлектрическая батарея холодильного устройства содержит последовательно соединенные термоэлементы 1 с холодными, термоэлементы 2 с горячими спаями и блок 3 электропитания, выполненный в виде источника переменного тока. В электрической цепи между термоэлементами 1 и 2 и блоком 3 электропитания установлены соответственно конденсаторы 4, 5 и 6. Термоэлемент 1 содержит параллельно соединенные холодные первый и второй спаи 7 и 8 с противоположным расположением материалов спая и два диода 9 и 10, установленные последовательно спаям 7 и 8 с противоположным относительно друг друга расположением анодов и катодов. Спаи 7 и 8 и диоды 9 и 10 образуют соответственно две параллельные ветви 11 и 12 электрической цепи термоэлемента 1. Термоэлемент 2 содержит параллельно соединенные горячий первый и второй спаи 13 и 14 с противоположным относительно друг друга расположением материалов спая и два диода 15 и 16, установленные последовательно со спаями 13 и 14 с противоположным относительно друг друга расположением анодов и катодов. Спаи 13 и 14 и диоды 15 и 16 образуют соответственно две параллельные ветви 17 и 18 электрической цепи термоэлемента 2. Кроме того диоды 9 и 10 термоэлемента 1 и соответствующие диоды 15 и 16 термоэлемента 2 имеют противоположное относительно друг друга расположение анодов и катодов (фиг. 1). Во втором варианте выполнения термоэлектрической батареи (фиг. 2) диоды 9 и 10 термоэлемента 1 и соответствующие им диоды 15 и 16 термоэлемента 2 установлены относительно друг друга идентично. Термобатарея работает следующим образом. Питание от блока 3 источника электропитания подается на схему (фиг. 1) через конденсатор 4 в виде переменного тока фиксированной частоты (фиг. 4). Через диод 9 проходят импульсы только положительной полярности (фиг. 2). В соответствии с эффектом Пельтье на спае 7 в ветви 11 термоэлемента 1 поглощается тепло из окружающей среды, причем количество поглощенного тепла составляет



Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5