Способ изготовления щеточных уплотнений гтд
Использование: для газотурбинных двигателей, изготавливают путем формирования плотно прилегающих металлических проволок в паковку, преимущественно методом намотки. Сущность изобретения: паковку фиксируют усилием сжатия с помощью боковых пластин уплотнения, обрезают ее по рабочему и противолежащему торцам и по последнему сваривают паковку с пластинами. При этом в процессе формирования металлических проволок небольшие группы слоев позиционируют друг относительно друга с помощью технологических прокладок у торца, противолежащего рабочему. Усилие сжатия прикладывают только по ширине прокладок между боковыми пластинами и соединяют только по ширине прокладок между боковыми пластинами, и соединяют прокладки с паковкой при помощи сварки ее с пластинами. Наиболее эффективна для качественного выполнения щеточного уплотнения электронно-лучевая сварка торца, противолежащего рабочему, при этом зону сварки легируют через технологические прокладки, которые выполняют из материала основной составляющей материала проволок с равномерно расположенными в нем мелкодисперсными легирующими элементами. 1 з.п. ф-лы, 4 ил.
Изобретение относится к технологии изготовления кольцевых уплотнительных элементов, предназначенных для создания газового уплотнения между вращающимися деталями турбин, преимущественно для газотурбинных двигателей (ГТД).
Одной из проблем, связанной со щеточным уплотнением, состоящем из паковки металлических щетинок, выступающих со стороны рабочего торца относительно боковых пластин, преимущественно разной ширины, является то, что щетина уплотнения должна иметь достаточную упругость, чтобы компенсировать колебания радиального зазора в условиях высокой вибрации в двигателе, сводя протечки рабочей среды между разделяемыми полостями к допустимым значениям, при этом величина натяга должна соответствовать величине, при которой мощность, затрачиваемая на преодоление силы трения в одном уплотнении, не превышает 0,15% от мощности, потребляемой валом при максимальном его вращении. Для обеспечения требуемой степени герметичности полостей, в частности в ГТД, необходимо иметь определенное количество плотно уложенных металлических проволок-щетинок в зазоре уплотняемой пары. В одной уплотняющей ступени они укладываются одна относительно другой в несколько слоев и образуют довольно большой по ширине слой щеточных элементов между боковыми пластинами. Возможен вариант выполнения небольшого количества слоев металлических щетинок между боковыми пластинами одной ступени, но тогда для обеспечения требуемой герметичности полостей формируют набор таких элементов в несколько ступеней. В первом случае плотность и количество слоев щетинок велики, что приводит к увеличению жесткости массива щеточных элементов и, как следствие, к чрезмерному обжатию уплотняемой поверхности, что приводит к снижению мощности на валу двигателя и его ресурса из-за быстрого износа контактирующих пар. Даже выполнение щеточных элементов под углом к оси уплотнения как в радиальной, так и в осевой плоскостях не улучшает условия работы уплотнения в должной степени. А во втором случае значительно увеличивается вес конструкции уплотняющего узла, что нежелательно для ГТД. Существуют различные технологии изготовления щеточных уплотнений из металлических проволок. Так, по патенту ФРГ N 3606284, кл. F 16 J 15/16, 1985, формируют слои плотно прилегающих щетинок путем навивки металлической проволоки на два продольных стержня-оправу, фиксируют набранное количество слоев скобами на стержнях, разрезают паковку металлической проволоки параллельно стержням оправки и изгибают прямолинейные элементы по требуемой форме щеточного уплотнения. Затем свободные концы щетинок паковки зажимают между двумя боковыми кольцевыми пластинами, усилием сжатия фиксируют один торец паковки и обрезают выступающие из пластин щетинки, образуя рабочий торец уплотнения. Данная технология получения щеточного уплотнения одной ступени сложна и, кроме того, для обеспечения надежной изоляции полостей количество слоев щеточного материала должно быть большим, в результате чего на последней стадии технологии между боковыми пластинами зажимаются перепутанные, лежащие хаотически свободные концы щетинок, что в готовом угле уплотнения приводит к неравномерному обжатию уплотняемой поверхности и быстрому выходу ее из строя. В результате чего требуется увеличение количества ступеней в щеточном уплотнении узла, а это приводит к увеличению веса двигателя. Наиболее близкой по совокупности признаков к предлагаемой технологии является технология изготовления одной ступени щеточного уплотнения (патент Великобритании N 2001400, кл. F 16 J 15/16, 1977), состоящая в том, что формируют слой плотно прилегающих металлических проволок в паковку путем намотки на оправку кольцевой формы материала в виде металлических нитей, усилием сжатия фиксируют паковку проволок у торца противоположного рабочему между боковыми пластинами, обрезают рабочий и противолежащий ему торцы паковки и по последнему сваривают паковку с пластинами. В процессе намотки большого количества лежащих друг на друге слоев щеточного материала постоянное усилие натяжения их создает неравномерное сжатие щетинок проволоки по слоям, а это приводит к тому, что наиболее плотно сжатые слои снижают упругость рабочего торца всех щетинок, следствием чего является быстрая деформация уплотняемой поверхности. При этом большое выделение тепла от взаимодействия контактных сопрягаемых поверхностей приводит к оплавлению рабочих торцев щетинок и их свариванию, что снижает надежность щеточного уплотнения, вызывает выход из строя уплотняемого узла и снижение срока его службы. При использовании сварки для соединения щеточного материала особенно жаропрочных сплавов на никелевой или кобальтовой основах, используемых в ГТД, в зоне, прилегающей к зоне плавления, происходит разупрочнение материала щетинок, что снижает их срок службы, делает их подверженными разрушению в этой зоне и выходу из строя узла уплотнения особенно при пониженной упругости щетинок. В связи с этим боковые пластины при существующей технологии делают большой ширины для удаления рабочей зоны щетинок от опасной разупрочненной зоны проволок. А это увеличивает вес и размеры узла, но не обеспечивает требуемой высокой степени надежности щеточного уплотнения. Изобретение решает задачу, связанную со снижением жесткости паковки и повышением надежности щеточного уплотнения, выполненного в виде одной ступени, содержащей требуемое количество щеточных элементов на единицу площади и имеющей малый вес. Задача решается тем, что формируют слои плотно прилегающих металлических проволок в паковку, усилием сжатия фиксируют ее у торца противолежащего рабочему между боковыми пластинами уплотнения, обрезают рабочий и противолежащий торцы паковки и по последнему сваривают паковку с пластинами, при этом в процессе формирования паковки в слои между ними у торца, противолежащего рабочему, размещают технологические прокладки, позиционируя четко сформированные небольшие количества слоев относительно друг друга, усилие сжатия прикладывают по ширине прокладок между боковыми пластинками и соединяют прокладки с паковкой при сварке ее с пластинами. Данная технология с позиционированием слоев за счет использования технологических прокладок гарантирует наличие зазора между слоями четко сориентированных проволок, что позволяет обеспечить равномерное сжатие щетинок по толщине всех разделенных слоев проволок в процессе фиксации их для обрезки торцев и сварки элементов узла. Это позволяет сохранить равномерное расположение проволок по всей толщине и длине паковки щеточного элемента. Величина зазора, гарантированного технологическими прокладками между слоями, должна быть равна эффективной величине прогиба слоев проволок и соизмерима практически с толщиной слоев проволок, что позволяет им у рабочего торца занять свободное непринужденное (незаполненное) расположение и в силу упругости материала щетинок деформироваться в случае изменения величины зазоров уплотняемой пары, сохраняя при этом целостность перегородки между изолируемыми полостями. Устанавливаемые технологические прокладки имеет смысл выполнять толщиной не более двух толщин слоев для обеспечения равномерного и полного заполнения свободного пространства у рабочего торца щеточного уплотнения. При этом чем больше толщина слоя проволок, тем больше толщина прокладки приближается к равной или меньшей его толщине. Если такой слой формируется из проволоки малого диаметра в 2-4 ряда, то возможно использование прокладок толщиной двух толщин слоев проволоки. В любом из вариантов увеличение толщины прокладки за указанный максимум приводит либо к появлению несплошности заполняющих уплотняемый зазор щетинок, что ухудшает условия герметизации, либо приводит к значительному увеличению веса и габаритов. Фиксацию паковки осуществляют усилием, сжимающим ее между боковыми пластинами уплотнения. Фиксация паковки под обрезку и сварку строго по ширине технологической прокладки между боковыми пластинами гарантирует исключение спутывания слоев проволок у рабочего торца и деформации их в зоне окончания без прокладок, что наиболее важно при сварке одного из торцев. Это позволяет избежать снижения прочностных свойств в этой зоне проволок. Строгое позиционирование слоев проволок и проволок в слоях возможно только при закреплении технологических пластин относительно остальных элементов узла уплотнения, а потому обязательно соединение прокладок с паковкой и боковыми пластинами в процессе сварки их по торцу, противолежащему рабочему. Таким образом, данная технология позволяет за счет использования позиционирующих технологических прокладок повысить прочностные свойства щеточного уплотнения и надежность его, исключив деформации уплотняемой поверхности и самих проволок и повысить срок службы щеточного уплотнения. Возможно использование технологических прокладок и в качестве носителя легирующих материалов, повышающих прочность околошовной зоны щеточных элементов, что необходимо при электронно-лучевой сварке узла уплотнения. Выбор сварки электронным лучом связан с тем, что она позволяет создать минимальную зону разупрочнения материала проволок и уменьшить деформации конструкции. Учитывая, что щеточное уплотнение ГТД работает в условиях высоких скоростей и температур, металлическая проволока, используемая для их изготовления, выполняется из жаропрочных сплавов на никелевой или кобальтовой основе. Введение легирующих элементов в зону сварки (плавления) исключит возможность образования трещин и обеспечит получение наилучших прочностных свойств соединения и околошовной зоны. Для этого зону сварки легируют, причем делают это через технологические прокладки, которые выполняют из материала основной составляющей материала проволок с равномерно расположенными в нем мелкодисперсными легирующими элементами, а сварку ведут электронным лучом. В этом случае очень эффективным является выполнение технологических прокладок равномерно перфорированных по всей ширине и из материала, являющегося основной составляющей материала проволок, а образованные пустоты между боковыми пластинами заполняют мелкодисперсными легирующими элементами. Для вышеуказанных материалов проволок в качестве легирующих материалов могут быть использованы мелкодисперсные порошки (величина зерен 100-150 мкм) металлов или интерметаллоидов, например Nb, Ni3Nb, Ni3 (Ti Al). Возможно выполнение перфорированных прокладок в виде сетки. Это позволяет значительно расширить технологические возможности способа. В этом случае формирование паковки щеточных элементов можно осуществлять методом намотки металлической проволоки на прямолинейную оправку, а после снятия паковки с оправки ей перед сваркой можно задать любую форму за счет гибкости и упругости самой щеточной паковки и сетки-прокладки. Целесообразно выполнение прокладок из упругого материала, так как в случае выполнения боковых пластин разной ширины и прокладок по ширине, близкой к большей из них, упругость прокладки обеспечивает работу щеточных элементов в режиме упругом деформации, что повышает надежность и долговечность уплотнения. На фиг. 1 показан (а) вариант изготовления щеточного уплотнения ГТД, расположенного под углом к оси его в радиальной плоскости; (б) вариант конструкции уплотнения с радиально расположенными щеточными элементами; на фиг. 2 схематически представлена оснастка для намотки щеточного уплотнения по фиг. 1,а; на фиг. 3 оснастка для операций обрезки одного из торцев паковки и сварки его; на фиг. 4 оснастка для обрезки рабочего торца щеточного уплотнения. Изготавливаемое щеточное уплотнение состоит из уложенных в плотную кольцевую паковку 1 металлических проволок щетинок 2, располагаемых под углом
Формула изобретения
1. Способ изготовления щеточных уплотнений ГТД, при котором формируют слои плотно прилегающих металлических проволок в паковку, усилием сжатия фиксируют ее с помощью боковых пластин уплотнения, обрезают рабочий и противолежащий торцы паковки и по последнему сваривают паковку с пластинами, отличающийся тем, что в процессе формирования металлических проволок слои их позиционируют с помощью прокладок у торца, противолежащего рабочему, усилие сжатия прикладывают по ширине прокладок между боковыми пластинами и соединяют прокладки с паковкой при сварке ее с пластинами. 2. Способ по п.1, отличающийся тем, что зону сварки легируют через прокладки, выполненные из материала основной составляющей материала проволок с равномерно расположенными в нем мелкодисперсными легирующими элементами, а сварку ведут электронным лучом.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4