Система автоматического управления периодическим процессом культивирования микроорганизмов
Использование: в биотехнологической промышленности, а именно в системах автоматического управления периодическим процессом культивирования микроорганизмов. Сущность изобретения заключается в том, что известная система автоматического управления, имеющая контуры стабилизации температуры и рН культуральной среды, расхода воздуха на аэрацию, каждый из которых состоит из датчика и задатчика регулируемого параметра, регулятора, содержащего элементы сравнения и управляющий блок, и исполнительных механизмов, расположенных на линиях подачи охлаждающей, аммиачной воды и воздуха на аэрацию, каждый контур стабилизации снабжен последовательно соединенными дифференциатором с запоминанием, вход которого соединен с соответствующими элементами сравнений регуляторов, и блоком обратной связи, содержащим логический элемент, реле и реле с замедлением на срабатывание, выход которого соединен с соответствующим управляющим блоком регулятора. Введение в систему указанных изменений позволяет следить за изменением задания, уменьшить колебательность переходных процессов в режиме слежения за изменением задающего воздействия, сократить длительность переходных режимов и тем самым обеспечить высокое качество управления. 1 ил., 2 табл.
Изобретение относится к биотехнологической промышленности, а именно к системам автоматического управления периодическим процессом культивирования микроорганизмов.
Известна система автоматического управления процессом культивирования микроорганизмов, содержащая контуры стабилизации температуры и рН культуральной среды, расхода воздуха на аэрацию, состоящая из датчиков и задатчиков регулируемых параметров, регуляторов, содержащих элементы сравнений и управляющие блоки, и исполнительных механизмов, расположенных на линиях подачи охлаждающей, аммиачной воды и воздуха на аэрацию [1, 2] Недостатками известной системы автоматического управления являются низкая точность управления, так как в аппарате в течение одного цикла меняются условия для развития культуры; накапливаются продукты обмена, тормозящие дальнейшее развитие культуры; уменьшается количество питательных веществ; изменяется кислотность среды и т.д. Наиболее близкой по технической сущности к предлагаемой системе является система стабилизации основных режимных параметров процесса, описанная в книге [3] Серьезной причиной низкой точности управления такой системы является тот факт, что задания на регулируемые параметры (температуру, рН культуральной среды и расход воздуха на аэрацию) в течение одного цикла меняются в соответствии с технологическим регламентом, как, например, представленные в табл. 1 [4] что требует от системы управления стабилизации нового заданного значения параметра, что происходит достаточно медленно из-за длительности переходных процессов, и при этом наблюдается высокая колебательность переходных процессов (по замечанию В.В. Бирюкова длительность переходных процессов является ахиллесовой пятой систем управления периодических процессов [5] О длительности переходных процессов указывается и в источниках [3, 6] Как видно из табл. 1, в течение одного цикла культивирования хлебопекарных дрожжей задание на температуру культуральной среды необходимо менять 5 раз; на кислотность среды 7 раз; на расход воздуха на аэрацию 4 раза при длительности цикла 18 часов. Задача изобретения повышение точности управления. Результат достигается тем, что система автоматического управления периодическим процессом культивирования микроорганизмов, содержащая контуры стабилизации температуры и рН культуральной среды, расхода воздуха на аэрацию, состоящая из датчиков и задатчиков регулируемых параметров, регуляторов, содержащих элементы сравнения и управляющие блоки, и исполнительных механизмов, расположенных на линиях подачи охлаждающей, аммиачной воды и воздуха на аэрацию, снабжена последовательно соединенными дискретными дифференциаторами с запоминанием, входы которых соединены с соответствующими элементами сравнения регуляторов, и блоками обратной связи, содержащими логические элементы, реле и реле с замедлением на срабатывание, выходы которых соединены с соответствующими управляющими блоками регуляторов. В результате проведенного поиска установлено, что в существующих технических решениях автоматического управления периодическим процессом культивирования микроорганизмов не использовались дискретные дифференциаторы с запоминанием, соединенные с блоками обратной связи, содержащими логические элементы, реле и реле с замедлением на срабатывание в предложенной совокупности с ранее известными блоками, что дает новый положительный эффект, а именно, повышает точность управления. На чертеже представлена структурная схема предложенной системы автоматического управления периодическим процессом культивирования микроорганизмов. Система содержит: объект управления дрожжерастильный аппарат 1; датчики: соответственно температуры культуральной среды 2, рН культуральной жидкости 3; расхода воздуха на аэрацию 4; задатчики: соответственно - температуры культуральной среды 5, рН культуральной среды 6, расхода воздуха на аэрацию 7; регуляторы: соответственно температуры культуральной среды 8, рН культуральной жидкости 9, расхода воздуха 10, содержащие элементы сравнения 11, 12, 13 и управляющие блоки 14, 15, 16; дискретные дифференциаторы с запоминанием 17, 18, 19; блоки обратной связи 20, 21, 22, содержащие логические элементы 23, 24, 25, реле 26, 27, 28, реле с замедлением на срабатывание 29, 30, 31; исполнительные механизмы 32, 33, 34, установленные соответственно на линиях подачи охлаждающей и аммиачной воды и подачи воздуха на аэрацию. Система работает следующим образом. Рассмотрим на примере стабилизации температуры культуральной среды. Стабилизация рН культуральной среды и расхода воздуха на аэрацию осуществляется аналогично. Сигналы с датчика температуры 2, пропорциональный текущему значению температуры культуральной жидкости, и задатчика 5, пропорциональный заданному в данный момент времени значению температуры культуральной жидкости, поступают на элемент сравнения 11 регулятора температуры культуральной жидкости 8, где эти два значения сравниваются и определяется их разность, т.е.
















где


производная возрастает, модуль возрастает;
производная убывает, модуль возрастает;
производная убывает, модуль убывает;
производная возрастает, модуль убывает. Логический элемент 23 блока обратной связи 20 в первых двух случаях направит сигнал Z1(t) на реле 26; в третьем и четвертом случаях на реле с замедлением на срабатывание 29. Таким образом с блока обратной связи 20 дополнительный управляющий сигнал Zоб(t) поступит на управляющий блок 14 регулятора 8, где окажет свое корректирующее дополнительное воздействие на величину











Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2