Параболическая линза
Использование: в ускорительной технике, в частности при транспортировке пучков заряженных частиц. Сущность изобретения: в параболическую линзу, состоящую из двух параболоидов вращения, соединенных вершинами, введена центральная дискообразная шина, разделяющая линзу на две половины, симметричные относительно этой шины. 2 ил.
Предлагаемое изобретение относится к магнитооптическим системам каналов транспортировки пучков заряженных частиц, а именно к устройствам, в которых происходит транспортировка заряженных частиц за счет их взаимодействия с магнитными полями и может быть использовано при одновременной фокусировке частиц противоположных знаков (например, e,
,
и др.).


Формула изобретения
Параболическая линза, состоящая из двух тонкостенных элементов в форме параболоидов вращения, соединенных вершинами, отличающаяся тем, что в нее введена центральная дискообразная токонесущая шина, разделяющая линзу на две половины и контактирующая с вершинами тонкостенных элементов.РИСУНКИ
Рисунок 1, Рисунок 2
Похожие патенты:
Изобретение относится к электронной технике и может быть эффективно применено в устройствах, использующих явление протекания электрического тока в вакууме, плазме, газе или жидкости
Квадрупольная магнитная линза // 1010676
Патент 402171 // 402171
Квадрупольная магнитная линза // 341184
Магнитная линза // 243085
Квадрупольная магнитная линза // 212395
Патент 186576 // 186576
Способ создания беспроволочного соленоида // 2097867
Изобретение относится к физике и может найти применение не только для научных исследований, но и для решения важных технических задач, связанных с получением протяженных однородных электромагнитных полей
Изобретение относится к электронным линзам, а точнее к иммерсионным магнитным объективам, и может быть использовано при формировании эмиссионного изображения исследуемого объекта на люминесцентном экране эмиссионного электронного микроскопа. Технический результат - повышение электронно-оптического увеличения при сохранении оптической базы микроскопа, улучшение качества эмиссионного изображения и расширение номенклатуры исследуемых объектов. Иммерсионный магнитный объектив эмиссионного электронного микроскопа содержит корпус с верхним и нижним полюсными наконечниками из магнитопроводящего материала с продольным каналом по оптической оси системы, в зазоре между которыми размещен объектодержатель с объектом. Верхний полюсный наконечник является анодом, изолирован от корпуса и выполнен из двух частей с разрывом между ними в виде щели в плоскости, перпендикулярной оптической оси. Нижний полюсный наконечник выполнен с возможностью осевого перемещения. Нижняя часть верхнего наконечника закреплена на корпусе через изолятор. Верхний наконечник помещен в экранирующий электрод, который выполнен из немагнитного материала в виде усеченного конуса, соосного оптической оси, закрепленный на корпусе. Торцевые поверхности нижней части анода и конуса ограничены единой плоскостью. 1 ил.
Изобретение относится к электронным линзам, а точнее к иммерсионным магнитным объективам, и может быть использовано при формировании эмиссионного изображения исследуемого объекта на люминесцентном экране эмиссионного электронного микроскопа с большим электронно-оптическим увеличением при изучении топологии поверхности, например, термокатодов. Технический результат - повышение электронно-оптического увеличения без изменения оптической базы микроскопа, повышение качества эмиссионного изображения очень малых размеров и обеспечение возможности работы микроскопа в трех режимах, а именно: электростатическом, с магнитной фокусировкой и комбинированном. Иммерсионный магнитный объектив эмиссионного электронного микроскопа содержит корпус с верхним и нижним полюсными наконечниками из магнитопроводящего материала с продольным каналом по оптической оси системы, в зазоре между которыми размещен объектодержатель с объектом. Верхний полюсный наконечник, являющийся анодом, изолированный от корпуса, выполнен из двух частей с разрывом между ними в виде щели шириной S1 в плоскости, перпендикулярной оптической оси. Нижний полюсный наконечник выполнен с возможностью осевого перемещения. Нижняя часть верхнего наконечника закреплена на корпусе через изолятор, причем она выполнена из двух частей с разрывом между ними в виде щели шириной S2 в плоскости, перпендикулярной оптической оси, при этом части соединены между собой металлическим кольцом из немагнитного материала. Верхний наконечник помещен в экранирующий электрод, выполненный из немагнитного материала, в виде усеченного конуса, соосного оптической оси, закрепленный на корпусе через изолятор. Причем торцевые поверхности нижней части анода и конуса ограничены единой плоскостью, а расстояние между торцами частей нижней части верхнего наконечника равно (1…1,5)d, где d - ширина зазора между полюсными наконечниками при условии: S2=S1=(0,1…0.5)d. 1 ил.