Способ определения коэффициента термического расширения твердых тел
(57) Изобретение относится к области теплофизических измерений и предназначено для определения коэффициента термического расширения твердых тел. Задача: получение истинного значения КТР материала при данной температуре и сокращение продолжительности испытаний. Сущность изобретения: образец постоянного сечения из материала с известными плотностью и удельной теплоемкостью при данной начальной температуре подвергают адиабатическому сжатию (растяжению) известным напряжением, измеряют вызванное этим изменение температуры образца и вычисляют коэффициент термического расширения по формуле. Технический результат: повышение производительности испытаний при определении КТР твердых тел, возможность создания дилатометров без измерителей удлинения образца. 1 табл.
Изобретение относится к области теплофизических измерений и может быть использовано при экспериментальном определении коэффициента термического расширения твердых тел.
Известные способы определения коэффициента термического расширения (КТР) [1] заключаются в том, что образец нагревается (охлаждается) на заданную величину температурного приращения









Сущность изобретения заключается в том, что на образец постоянного сечения (призма, цилиндр и т.п.) с известными плотностью и удельной теплоемкостью при данной начальной температуре воздействуют путем адиабатического сжатия (растяжения) известным напряжением, измеряют вызванное этим воздействием изменение температуры образца и вычисляют коэффициент термического расширения по указанной выше формуле. При изучении материалов, имеющих отношение к заявляемому объекту, не найдены объекты, содержащие признаки, идентичные признакам заявляемого технического решения, на основании чего делается вывод о его соответствии критерию "изобретательский уровень". Поскольку также не найдены решения, которые содержали бы полную совокупность признаков предлагаемого решения, делается вывод о его соответствии критерию "новизна". Предлагаемый способ определения КТР твердых тел обладает следующими преимуществами перед прототипом. Так как определение коэффициента термического расширения по предлагаемому способу сопровождается весьма малым отклонением от начальной температуры (по крайней мере в 50oC100 раз меньшим, чем в противосопостовляемых способах), вычисленное значение КТР является действительно истинным, отнесенным к начальной температуре опыта. В силу этогопредлагаемый способ может быть эффективно использован при излучении КТР В области его сильных изменений, например, в зоне фазовых переходов. Помимо этого, если в противопоставляемых способах длительность единичного опыта составляет величину порядка часа, что связано с требованием однородности температуры образца, то для проведения опыта по предлагаемому способу не более 2 3 секунд, т.е. примерно в 1000 раз меньше. Для проверки возможности определения коэффициента термического расширения твердых тел предлагаемым способом и сравнения полученных при этом результатов с имеющимися справочными данными были проведены испытания образцов из алюминия и органического стекла (сополимер ПММА марки 2-55). Образцы из алюминия с размерами 190х11,5х1,8 мм и образцы из органического стекла с размерами 190х11х3,1 мм подвергались растяжению при температуре 297 К и нормальном атмосферном давлении. Длительность опыта составляла 2 3 секунды, а за это время теплообмен образца с окружающей воздушной средой пренебрежимо мал, что позволяет считать условия проведения опыта весьма близкими к адиабатическим. В качестве датчиков температуры использовались пленочные никелевые термометры сопротивления, включенные в мостовую измерительную схему так, что на ее выходе формировался электрический сигнал, пропорциональный разности температур образца и окружающей среды. В приведенной ниже таблице представлены результаты этих опытов, из которых следует, что найденные значения коэффициента термического расширения находятся в удовлетворительном согласии со справочными данными (см. Таблицы физических величин. Под. ред. акад. И. К. Кикоина. М. Атомиздат, 1976. - 1008 с. Гудимов М. М. Петров Б. В. Органическое стекло. М. Химия, 1981. - 216 с.)
Приведенные примеры подтверждают практическую возможность осуществления способа определения КТР твердых тел, при котором этот параметр действительно может считаться истинным значением, относящимся практически к температурной точке, а не к температурному интервалу. Кроме того, предлагаемый способ определения КТР весьма производителен, т. к. время проведения опыта определяется исключительно механическим быстродействием нагружающей системы и инерционностью термодатчиков.
Формула изобретения

где

C

T начальная температура образца, К;
s осевое напряжение в образце, н/м2;
q адиабатическое приращение температуры образца, К.
РИСУНКИ
Рисунок 1