Использование: для изготовления пленочных материалов, покрытий, конструкционных изделий, работающих в жестких эксплуатационных условиях в различных областях химической промышленности, машиностроении и других отраслях. Сущность: способ получения сополимеров на основе тетрафторэтилена (ТФЭ) осуществляют водно-эмульсионной сополимеризацией в присутствии перфорированного эмульгатора и водорастворимого радикального инициатора смеси, состоящей из 54,5 - 72,0 мол. % ТФЭ, 27,7 - 45,4 мол.% перфторметилвинилового эфира (ПФАВЭ) и 0,1 - 0,3 мол.% модифицирующего мономера-гексафторпропилена при повышенной температуре, в вакууме. Подпитку реакционной смеси при спаде давления проводят смесью, состоящей из 67 - 80 мол.% ТФЭ и 20 - 33 мол.% ПФАВЭ. Полученный сополимер обладает повышенной эластичностью, однороден по составу, имеет хорошую воспроизводимость свойств от партии к партии. 2 табл.
Изобретение относится к способу получения сополимеров тетрафторэтилена (ТФЭ) с перфторалкилвиниловыми эфирами (ПФАВЭ), отличающихся химстойкостью, термостабильностью, эластичностью, прочностью, способностью перерабатываться высокопроизводительными методами (прессования, экструзии и т. п.). Такие сополимеры широко используются для изготовления пленочных материалов, покрытий, конструкционных изделий, работающих в жестких эксплуатационных условиях в различных областях химической промышленности, машиностроения, электроники и др. отраслях народного хозяйства.
Известен [2] способ получения сополимеров ТФЭ с ПФАВЭ - перфторметилвиниловым (ПФМВЭ), перфторпропилвиниловым (ПФАВЭ) эфирами и др. Сополимеризация осуществляется в среде растворителя (перфтордиметилциклобутан) при температуре 60
oС и давлении 0,6 0,7 МПа под действием двухфтористого азота с единовременной загрузкой ТФЭ и ПФАВЭ в реакционную емкость. Получают сополимеры с содержанием ПФАВЭ 9 12 мас. (2 7 мол.), скорость процесса при этом составляет 20 35 г/л

ч. В конкретном примере синтеза сополимера ТФЭ с ПФМВЭ содержание последнего составляет 11,3 мас. (6,8 мол.), скорость процесса 25 г/л

ч. Физико-механические показатели сополимера в [1] не указаны. Недостатками указанного способа являются: 1). недостаточная эластичность получаемого сополимера. В случае синтеза сополимера ТФЭ с ПФМВЭ при содержании его порядка 6,8 мол. стойкость к многократным перегибам равна 1200 циклам, показатель эластичности, оцениваемый отношением остаточного удлинения после разрыва к относительному удлинению при разрыве, составляет 88% (см. наш контр. пример 9). Для сополимера ТФЭ и ПФПВЭ даже при содержании последнего до 10 мол. стойкость к многократным перегибам составляет не более 1400 циклов, эластичность 80% (см. наш контp. пример 10).
2). Низкая скорость процесса.
3). Неоднородность состава получаемого продукта, что связано с единовременной загрузкой мономеров.
Известен также [2] способ получения сополимера ТФЭ с ПФАВЭ сополимеризацией указанных мономеров в среде 1,1,2-трихлор - 1,2,2-трифторэтана при температуре 30 85
oC и давлении 0,35 3,5 МПа в присутствии свободно-радикальных инициаторов, ТФЭ и ПФАВЭ загружаются одновременно, давление поддерживается постоянным путем непрерывной подачи ТФЭ. В конкретном примере синтеза описан сополимер ТФЭ с 3 мол. ПФПВЭ, процесс осуществляется при температуре 40
oC и давлении 0,35 МПа под действием бис(перфторпропионил)-пероксида. При этом скорость процесса составляет 40 45 г/л

ч. Из свойств сополимера производится только вязкость расплава. Поскольку в процессе сополимеризации ведется подпитка реакционной массы ТФЭ, сополимер имеет более однородный состав, чем сополимер, получаемый по способу [1] процесс осуществляется с более высокой скоростью.
Недостатком указанного способа является низкая эластичность получаемого полимера.
По нашим данным стойкость к многократным перегибам сополимера 3 мол. ПФПВЭ равна 1300 циклам, показатель эластичности составляет 92% (см. наш конт. пример 11). По нашим данным сополимеры ТФЭ с 2 5 мол. ПФПВЭ, обычно выпускаемые промышленностью, например, Teflon-PFA фирмы Дюпон, обладают стойкостью и многократным перегибам 1300 1500 циклов и эластичностью 88 - 92% Наиболее близким по технической сущности к заявляемому способу является способ [3] получения сополимеров ТФЭ к фторалкилперфторвиниловыми эфирами формулы ХСF
2-(CF
2)
n-OCF=CF
2, где Х-H, Cl, F, n 1 7, предпочтительно с перфторалкилвиниловым эфиром, в частности с ПФПВЭ, модифицированных гексафторпропиленом (ГФП). Процесс осуществляется водно-эмульсионным способом в присутствии одного или более регуляторов роста цепи, перфорированного эмульгатора аммонийной соли перфтороктановой кислоты, водорастворимого радикального инициатора либо раствора КMnO
4, либо редокс-системы на основе персульфата аммония, с одновременной загрузкой в реакционную зону смеси, состоящей из 94 64 мол. ТФЭ, 1 6 мол. ПФПВЭ и 5 30 мол. модифицирующего мономера ГФР, и с последующей подпиткой ТФЭ. Процесс осуществляется при температуре 10 30
oC, давлении 1,2 1,5 МПа. При этом скорость процесса составляет 40 47 г/л
oч. Предпочтительно получаемый сополимер содержит 94,6 99 мол. ТФЭ, 3 0,3 мол. ГФП, 2,4 - 0,7 мол. ПФПВЭ. Получают сополимеры с хорошими физико-механическими свойствами, стойкие к химреагентам, с хорошими диэлектрическими показателями.
Недостатками указанного способа являются.
1) Недостаточная эластичность получаемого терполимера. По нашим данным (см. контр. пр. 12) стойкость к многократным перегибам сополимера с содержанием 0,8 мол. ГФП и 1,8 мол. ПФПВЭ составляет 1500 циклов, показатель эластичности 90% 2) Недостаточная однородность состава получаемого продукта, связанная с подпиткой только одним мономером ТФЭ, и невоспроизводимость свойств сополимера от партии к партии.
Технический результат, достижение которого обеспечивает предлагаемое изобретение, заключается в получении сополимеров ТФЭ с перфторалкилвиниловым эфиром с высокой эластичностью, однородных по составу с хорошей воспроизводимостью свойств от партии к партии.
Указанный технический результат достигается тем, что в способе получения сополимеров ТФЭ с перфторалкилвиниловым эфиром водно-эмульсионной сополимеризацией указанных мономеров в присутствии перфторированного эмульгатора и водорастворимого радикального инициатора с одновременной загрузкой в реакционную зону смеси ТФЭ, перфторалкилвинилового эфира и модифицирующего мономера ГФП и последующей подпиткой, одновременно загружать смесь, состоящую из 54,5 72 мол. ТФЭ, 27,7 45,4 мол. ПФМВЭ и 0,1 0,3 мол. ГФП, а подпитку проводят смесью, состоящей из 67 80 мол. ТФЭ и 20 - 33 мол. ПФМВЭ.
Использование в загрузочных и подпиточных смесях ПФМВЭ, а также ГФП в загрузочной смеси, позволяет получать сополимеры с оптимальным комплексом свойств высокой эластичностью, прочностью, химстойкостью, термостойкостью, при этом наличие в загрузочной смеси ГФП в количествах 0,1 0,3 мол. позволяет проводить процесс без применения регулятора молекулярной массы. ГФП практически не входит в основную цепь полимера, а образует лишь концевые группы, он способствует получению оптимального молекулярного распределения (ММР).
Использование загрузочной смеси с содержанием ГФП более, чем 0,3 мол. например до 0,35 мол. (см. наш контрольный пример 8), приводит к снижению скорости процесса, увеличению количества олигомерных фракций; еще большее увеличение содержания ГФП приводит дополнительно к уменьшению эластичности и стойкости к многократным перегибам. Применение ГФП в загрузочной смеси в количестве менее, чем 0,1 мол. требует введения дополнительного регулятора молекулярной массы, обычно это водоpодсодержащие соединения, которые приводят к образованию в сополимере нестабильных концевых групп; кроме того, это осложняет процесс приготовления смесей, требует тщательной очистки возвратных мономерных смесей, поскольку накопление в них водородсодержащих примесей может привести к отклонению свойств от заданных. Кроме того, получаемый сополимер не обладает требуемым ММР, при этом снижается эластичность и прочность (см. наш контрольный пример 7).
Как уже указывалось выше, подпитка только ТФЭ приводит к получению продукта, неоднородного по составу, с плохой воспроизводимостью свойств от партии к партии.
Подпитка смесью, состоящей из 67 80 мол. ТФЭ и 20 33 мол. ПФМВЭ, по заявленному способу позволяет получать однородные по составу сополимеры, с хорошо воспроизводимыми свойствами от партии к партии.
Использование в подпиточной смеси ПФМВЭ в количестве более, чем 33 мол. (см. наш контрольный пример 5) приводит к значительному снижению прочности. Применение ПФМВЭ и подпиточной смеси в количестве менее, чем 20 мол. приводит к снижению эластичности (см. наш контрольный пример 6).
При осуществлении заявляемого способа загрузочные и подпиточные смеси могут использоваться без дополнительной очистки, только с их корректировкой по составу. Благодаря тому, что ПФМВЭ является газообразным соединением (t
кип. минус 22,5
oC) также, как и ТФЭ, приготовление смесей и их корректировка не вызывает затруднений. При необходимости возвратные смеси легко разделяются на компоненты.
Сополимеризация по заявленному способу осуществляется в водной среде в присутствии перфорированного эмульгатора аммонийных солей различных перфторкарбоновых кислот, например перфторэнантовой, или перфторпеларгоновой кислот, или их смесей. В качестве водорастворимого инициатора могут использоваться персульфаты калия или аммония, или редокс-системы на их основе. Инициатор и эмульгатор берутся в количествах, обычно используемых в процессах эмульсионной полимеризации. Температура процесса определения температурой распада инициатора. При использовании персульфатов калия или аммония процесс осуществляется при температуре 60 75
oC, давлении 1,1 1,8 МПа. В результате эмульсионной полимеризации получается совершенно прозрачный латекс с содержанием 25 30 мас. твердого вещества.
Выделение полимера из латекса может быть осуществлено вымораживанием, механической коагуляцией или коагуляцией с помощью электролитов.
Свойства сополимеров определяется следующим образом.
1. Состав сополимеров методом ИК-спектроскопии.
2. Показатель текучести расплава (ПТР) по ГОСТ 11645-73 на экструзионном пластометре при температуре 260
oC и нагрузке 10 кг.
3. Физико-механические показатели: прочность при разрыве, относительное удлинение при разрыве, остаточное удлинение после разрыва в предел текучести по ГОСТ 11262-80.
4. Показатель эластичности ((


)) определяют как отношение остаточного удлинения после разрыва к относительному удлинению при разрыве.
5. Скорость к многократным перегибам по ГОСТ 23927.7-79.
Ниже приведенные примеры иллюстрируют существо изобретения.
Пример 1. В однолитровый автоклав из нержавеющей стали загружают 500 мл дистиллированной воды, 0,5 г персульфата калия и 0,5 г смеси аммонийных солей перфторэнантовой и перфоторпеларгоновых кислот в массовом соотношении 1: 1. Автоклав закрывают, проверяют на герметичность давлением азота в 2 МПа, затем вакуумируют до достаточного давления 0,001 0,0013 МПа. Далее в автоклав подают 40 г загрузочной смеси, содержащей 7,07 мол. ТФЭ, 29,1 мол. ПФМВЭ и 0,2 мол. ГФП. Автоклав помещают в качалку с числом качаний 100 110 в минуту. Содержимое автоклава нагревают до 68
oC, при этом давление поднимается до 1,6 МПа. При спаде давления на 0,1 МПа производят догрузку автоклава до 1,6 МПа подпиточной смесью, содержащей 79 мол. ТФЭ и 21 мол. АФМВЭ. Повторяя подпитки, за 4 ч расходуют 200 г подпиточной смеси. Непрореагировавшую смесь мономеров из автоклава собирают в баллон, автоклав охлаждают до комнатной температуры, открывают, затем из него выгружают 700 г, латекса с концентрацией 28 мас. После вымораживания латекса получают 200 г порошка сополимера со средним размером частиц 100 250 мкм, который высушивают в сушильном шкафу при 100 1230
oC. Условия сополимеризации, состав и свойства сополимера, полученного по примеру 1, а также по всем последующим примерам, приведены в табл. 1.
Пример 2. Процесс проводят аналогично примеру 1, но используют загрузочную смесь, состоящую из 64,35 мол. ТФЭ, 35,5 мол. ПФМВЭ и 0,15 мол. ГФП, и подпиточную смесь, состоящую из 72 мол. ТФЭ и 28 мол. ПФМВЭ. За 4 ч при давлении 1,6 МПа и температуре 70
oC расходуют 188 г подпиточной смеси. После обработки латекса, как описано в примере 1, получают 188 г сополимера.
Пример 3. Процесс проводят аналогично примеру 1, но используют загрузочную смесь, состоящую из 54,5 мол. ТФЭ, 45,4 мол. ПФМВЭ и 0,1 мол. ГФП, и подпиточную смесь, состоящую из 67,0 мол. ТФЭ и 33 мол. ПФМВЭ. За 4 ч при давлении 1,5 МПа и t 69
oC на подпитки расходуют 184 г подпиточной смеси; получают 184 г сополимера.
Пример 4. Процесс проводят аналогично примеру 1, но используют загрузочную смесь, состоящую из 72 мол. ТФЭ, 27,7 мол. ПФМВЭ и 0,3 мол. ГФП, и подпиточную смесь, состоящую из 80 мол. ТФЭ и 20 мол. ПФМВЭ. За 4 ч при давлении 1,6 МПа и температуре 67
oC на подпитки расходуют 208 г подпиточной смеси; получают 208 г сополимера.
Пример 5 (контрольный). Процесс проводят аналогично примеру 1, но используют загрузочную смесь, состоящую из 54,5 мол. ТФЭ, 45,4 мол. ПФМВЭ и 0,1 мол. ГФП, и подпиточную смесь, состоящую из 65 мол. ТФЭ и 35 мол. ПФМВЭ. За 4 ч при давлении 1,4 МПа и температуре 665
oC расходуют 180 г подпиточной смеси. Получено 180 г сополимера.
Пример 6 (контрольный). Процесс проводят аналогично примеру 1, но используют загрузочную смесь, состоящую из 54,5 мол. ТФЭ, 45,4 мол. ПФМВЭ и 0,1 мол. ГФП, и подпиточную смесь, состоящую из 82 мол. ТФЭ и 18 мол. ПФМВЭ. За 4 ч при давлении 1,6 МПа и температуре 67
oC на подпитки расходуют 208 г подпиточной смеси. Получено 208 г сополимера.
Пример 7 (контрольный). Процесс проводят аналогично примеру 1, но используют загрузочную смесь, состоящую из 70,85 мол. ТФЭ, 29,1 мол. ПФМВЭ и 0,05 мол. ГФП, и подпиточную смесь, состоящую из 79 мол. ТФЭ и 21 мол. ПФМВЭ. За 4 ч при давлении 1,6 МПа и температуре 68
oC на подпитки расходуют 200 г подпиточной смеси. Получают 200 г сополимера.
Пример 8 (контрольный). Процесс проводят аналогично примеру 1, но используют загрузочную смесь, состоящую из 70,85 мол. ТФЭ, 28,8 мол. ПФМВЭ и 0,33 мол. ГФП, и подпиточную смесь, состоящую из 79 мол. ТФЭ и 21 мол. ПФМВЭ. За 4 ч при давлении 1,6 МПа и температуре 68
oC расходуют 140 г подпиточной смеси. Получают 140 г сополимера.
Пример 9 (контрольный, аналогично [1]). Однолитровый автоклав из нержавеющей стали проверяют на герметичность давлением азота в 2,5 МПа и вакуумируют до остаточного давления 0,001 0,0013 МПа. Затем в автоклав загружают 320 мл перфтордиметилциклобутана, смесь из 87,5% мол. ТФЭ и 12,5 мол. ПФМВЭ. Автоклав помещают в качалку и нагревают до 60
oC. При этой температуре в автоклав подают 0,032 г. двухфтористого азота. Максимальное давление составляет 2,2 МПа. При качании в течение 2 ч при 60
oC давление снижается до 0,6 МПа. Затем содержимое автоклава охлаждают до комнатной температуры, давление снижают. Автоклав открывают, выгружают из него полимер, который высушивается в термошкафу при температуре 100 120
oC. Получают 50 г сополимера.
Пример 10 (контрольный, аналогично [1]). Подготовив автоклав, как описано в примере 9, загружают в него 320 г перфтордиметилциклобутана, 27 г ПФПВЭ и 75 г ТФЭ (16,6 мол. и 83,4 мол. соответственно). Автоклав помещают в качалку и нагревают до 60
oC. При этой температуре в автоклав подают 0,03 г двухфтористого азота. Максимальное давление составляет 1,6 МПа. При качании в течение 2 ч при 60
oC давление снижается до 0,6 МПа. Затем содержимое автоклава охлаждают до комнатной температуры, давление снижают, автоклав открывают и выгружают из него полимер, который высушивают в термошкафу при температуре 100 120
oC. Получают 46 г сополимера.
Пример 11 (контрольный аналогично [2]). Однолитровый автоклав проверяют на герметичность давлением азота в 2,5 МПа и вакуумируют до остаточного давления 0,0011 0,0013 МПа. Затем в автоклав загружают 800 мл 1,1,2-трихлор-1,2,2-трифторэтана и 10 г ПФПВЭ, поднимают температуру до 40
oC и вводят 40 г ТФЭ до давления 0,35 МПа (загрузочная смесь содержит 10 мол. ПФПВЭ и 90 мол. ТФЭ). Давление в автоклав вводят 20,2 г 1,5%-ного раствора бис-(перфторпропионил)пероксида. Процесс ведут при температуре 40
oC и при давлении 0,35 МПа, поддерживая его постоянным путем непрерывного добавления ТФЭ. Спустя 66 мин, израсходовав 48 г ТФЭ, давление снимают, содержимое автоклава извлекают и высушивают при 200
oC. Получают 49 г сополимера.
Пример 12 (контрольный аналогично [3] прототипу). В однолитровый автоклав загружают 380 мл дистиллированной воды, 10 г аммонийной соли перфторпеларгоновой кислоты и 0,3 г перманганата калия. Автоклав закрывают, проверяют на герметичность давлением азота в 2,5 МПа и вакуумируют до остаточного давления 0,0011 0,0013 МПа. Затем в автоклав подают 1,6 мл метиленхлорида, 5 г ПФПВЭ, 15,5 ГФП, 20 г ТФЭ. Содержимое автоклава нагревают до 27
oС, давление поднимается до 1,2 МПа. Указанное давление поддерживают непрерывной подпиткой ТФЭ и в течение 76 мин расходуют 50 г ТФЭ. Вводимая смесь мономеров имеет следующий состав: 85,17 мол. ТФЭ, 2,3 мол. ПФПВЭ, 12,53 мол. ГФП. Затем процесс ведут до тех пор, пока давление в автоклаве не снизится до 0,7 МПа. Непрореагировавшую смесь из автоклава собирают в баллон. Автоклав открывают, полученную дисперсию сливают, коагулируют в отдельной емкости соляной кислотой, после чего продукт отфильтровывают, промывают дистиллированной водой, сушат 6 ч при 200
oC и прогревают 32 ч при 280
oC. Получают 55 г сополимера.
Для определения воспроизводимости свойств получаемых сополимеров по технологии примеров 1 и 2 по заявленному способу, а также по примеру 12 (контрольный по прототипу) были проведены серии по 20 опытов и определен разброс свойств по основным показателям сополимеров. Свойства сополимеров серийных опытов приведены в табл. 2.
Как видно из представленных данных (табл. 1 и 2), заявляемый способ позволяет получать сополимеры с высокой эластичностью, хорошей прочностью, однородные по составу, с хорошо воспроизводимыми свойствами от партии к партии, в то время как сополимеры, получаемые по известным способам, имеют значительно более низкую эластичность и плохую воспроизводимость свойств. Кроме того, использование по заявляемому способу в загрузочной смеси ГФП позволяет проводить процесс без введения регуляторов молекулярной массы, что упрощает регенерацию возвратных смесей.
Формула изобретения
Способ получения сополимеров тетрафторэтилена с перфторалкилвиниловым эфиром водно-эмульсионной сополимеризацией в присутствии перфторированного эмульгатора и водорастворимого радикального инициатора смеси тетрафторэтилена, перфторалкилвинилового эфира и модифицирующего мономера гексафторпропилена, загружаемой единовременно, с последующей подпиткой реакционной смеси, отличающийся тем, что единовременно загружают смесь, состоящую из 54,5 72,0 мол. тетрафторэтилена, 27,7 45,4 мол. перфторметилвинилового эфира, 0,1 0,3 мол. гексафторпропилена, а подпитку реакционной смеси проводят смесью, состоящей из 67 80 мол. тетрафторэтилена и 20 33 мол. перфторалкилвинилового эфира.
РИСУНКИ
Рисунок 1,
Рисунок 2,
Рисунок 3