Способ изготовления композиционного материала
Использование: способ изготовления композиционного материала. Сущность изобретения: композиционный материал содержит тесную и равномерную смесь, по меньшей мере, двух компонентов. Указанную смесь подвергают вибрации в емкости, с частотой, близкой к средней резонансной частоте каждого из компонентов и емкости, таким образом, чтобы осуществлять дегазацию составляющих. Затем осуществляют связь между компонентами таким образом, что получаемый композиционный материал обладает практически лишенной включений воздуха структурой, компактной и плотной. 16 з.п. ф-лы, 27 ил, 1 табл.
Изобретение относится к способам изготовления композиционного материала, образуемого при смешивании, по меньшей мере, двух составляющих, которые могут быть представлены в различных формах.
В том случае, когда желают выполнить композиционный материал, образованный из упрочняющей составляющей, такой, как волокно, и основы, такой, как жидкая смола, необходимо осуществлять насыщение волокон жидкой смолой. Эта операция затруднена из-за закупоривания воздуха между волокон, который мешает проникновению смолы. Это насыщение становится еще более трудным, когда материал содержит несколько слоев, сетей или полотен волокон в виде драпажа. Если же пропитка не полная, то конечный материал не будет обладать компактной и плотной структурой, которая требуется для некоторых применений. Действительно, общая герметичность материала и его механическое сопротивление тем лучше, чем меньше его структура содержит воздушных пузырьков. Известен композиционный материал, содержащий, по меньшей мере, одну упрочняющую компоненту и, по меньшей мере, один связывающий компонент, пропитывающий первую, причем они связаны между собой таким образом, что совокупность практически лишена воздушных включений (I). Однако, техническая проблема дегазации становится важным препятствием для получения композиционного материала очень хорошего качества. Кроме того, реакционная нестабильность определенных составляющих, которые при резких движениях или при контакте с другими компонентами реагируют слишком бурно, не позволяет им смешиваться или комбинироваться при помощи традиционных технологий. Известен также способ изготовления композиционного материала, содержащего плотную и гомогенную смесь, по меньшей мере, двух компонентов, при котором в емкость подают, по меньшей мере, два образующих компонента, смешивают их и соединяют компоненты между собой (2). Другая проблема заключается в распределении и статистической ориентации материала наполнителя в жидкой матрице. В самом деле, конечные свойства композиционного материала тесно связаны с пространственным расположением различных компонентов. Так, например, размешивание коротких волокон в жидкой смоле является основной операцией для получения композиционного материала с хорошим сопротивлением. Задачей настоящего изобретения является разрешение этих проблем, а именно: создание качественного композиционного материала с компактной и плотной структурой за счет дегазации и ориентирования волокон армирующего материала и обеспечение смешивания порошков или наполнителей вне зависимости от их плотности и размеров с термопластичным связующим. Технический результат достигается тем, что в способе изготовления композиционного материала смешивание осуществляют путем приложения к смеси в емкости вибрации с частотой, близкой к средней резонансной частоте каждого из компонентов и частоте емкости для дегазации компонентов, с последующим соединением компонентов с образованием композиционного материала со структурой без воздушных включений, компактную и плотную. В соответствии с другой характеристикой изобретения, частоту и амплитуду используемой вибрации определяют путем предварительной регистрации и анализа механического поведения каждого компонента и емкости, взятых изолированно, в ответ на приложение вибрации, частоту которой плавно изменяют для выбора резонансной частоты. Также тем, что используют, по меньшей мере, один упрочняющий компонент и, по меньшей мере, один связующий компонент. В соответствии с частным случаем выполнения изобретения используют, по меньшей мере, один полимеризуемый связующий компонент, а компоненты соединяют путем полимеризации. В соответствии с другим случаем осуществления изобретения, упрочняющие компоненты и связующие компоненты соединяют путем нагрева до температуры, достаточной для расплавления связующих компонентов. Кроме того, тем что используют упрочняющие компоненты, содержащие стеклянные микрошарики и/или, по меньшей мере, одно полотно волокон и/или короткие волокна, а также тем, что связующие компоненты представляет собой жидкую смолу. В соответствии с частными случаями реализации изобретения вибрация может передаваться смеси через связующие компоненты, упрочняющие компоненты или же емкость, а частота вибрации находится в диапазоне от 30 до 180 Гц. Благодаря создаваемой изобретением возможности смешивания порошков однородным образом вне зависимости от их плотности, размеров, и при этом без ослабления одной из составляющих, становится возможным производство пенотермопластиков. Эти вспененные материалы получают смешиванием наполнителей (микрошарики стекла, углерода, фенола, акрилонитрила, акрила, поливинилхлорида и т.д.) и порошковой термопластичной матрицы из полипропилена, полиамида, кополиамида и т.д. Смесь затем нагревают до температуры плавления матрицы, что осуществляют под давлением. Конечный продукт может иметь плотность между 0,2 и 0,6 без ограничения размеров. Изобретение позволяет осуществить смешивание любых порошков с теми же преимуществами, которые дает жидкостной носитель, обеспечивая для каждой частицы пробег одинакового расстояния. Кроме того, частицы имеют одинаковый для всех частиц контакт со стенками емкости. При этом электростатические заряды могут передаваться от стенок емкости частицам порошка, причем, в случае необходимости, может быть осуществлена инверсия заряда. Таким образом, возможно смешивание продуктов, имеющих различные электростатические заряды. Композиционный материал, полученный данным способом, может быть использован для создания морских или аэрокосмических конструкций, при конструировании резервуаров, оболочек, кабин и подводных частей сооружений во всех видах промышленности. Способ также позволяет получить в соответствии с потребностью величину вспенивания, замачивания, гомогенизации, пропитки, смешивания и расслоения, а также изменение взаимосвязи между различными компонентами. В результате его применения упрочняющие компоненты погружаются в связующие компоненты таким образом, что материал практически лишен воздушных включений, является компактным и плотным, что позволяет достичь повышение механических свойств конечного твердого материала. На фиг. 1 представлено поперечное сечение не проходившего вибрацию образца, которое детально можно наблюдать с помощью сканирующего электронного микроскопа, работающего с обратной диффузией электронов. Показан пакет срезанных поперечно волокон, можно видеть многочисленные пустоты в структуре. На фиг. 2 показана деталь предыдущей фотографии, где видны разъединенные волокна, местами лишенные всякой смолы. На фиг. 3 представлено другое поперечное сечение не проходившего вибрацию образца, полученное также с помощью сканирующего электронного микроскопа с обратной диффузией электронов. В пакете срезанных поперечно волокон можно слева заметить отслоение (белая стрелка), а также наличие пустот. На фиг. 4 показана центральная часть предыдущей фотографии. На фиг. 5 показано поперечное сечение образца, проходившего вибрацию. Фотография получена с помощью сканирующего электронного микроскопа с обратной диффузией электронов. Видно хорошее соединение смолы (серый цвет) и волокон (белый цвет), без видимого отслоения в местах контактов волокно/смола. На фиг. 6 показан образец, проходивший вибрацию, в его поперечном сечении, но взято другое поле электронного микроскопа. В некоторых местах (стрелки) имеются промежутки между смолой и волокнами. На фиг. 7 показано поперечное сечение образца без вибрации, полученное при помощи сканирующего электронного микроскопа с обратной диффузией электронов. Смола выглядит серой, а поперечные сечения волокон выглядят белыми. Имеется отслаивание смолы по всем контурам волокон (черный цвет). На фиг. 8, полученной при помощи той же техники, показано продольное сечение не проходившего вибрацию образца. Смола выглядит серой, а поперечные сечения волокон белыми. Как и в предыдущем случае, смола отстает вокруг всех волокон (черный цвет по контуру волокон). На фиг. 9, полученной аналогично, показано продольное сечение не проходившего вибрацию образца. Смола выглядит серой, а поперечные сечения волокон белыми. Как и в предыдущем случае, смола отстает вокруг всех волокон (черный цвет по контуру волокон). Стрелка показывает поле фотографии 10. На фиг. 10 показано поле по стрелке предыдущей фотографии. Можно видеть зернистую текстуру смолы и пустоты в местах соединения смола/волокно. На фиг. 11 показано продольное сечение образца, не проходившего вибрацию. Смола выглядит серой, поперечное сечение волокон белое. Эта фотография иллюстрирует отслоение в плоскости, перпендикулярной плоскости стратификации. На фиг. 12, полученной той же техникой, показано продольное сечение не подвергавшегося вибрации образца. Смола выглядит серой, поперечные сечения волокон белыми. Эта фотография иллюстрирует другой пример отслаивания вне плоскости стратификации. На фиг. 13 показан образец с микрошариками без смолы. На фиг. 14 18 показаны образцы синтактических пен, полученных без вибрации (увеличение 250 и 100). На фиг. 19 и 20 показан вибрированный образец микрошариков во время загрузки формы. На фиг. 21 23 показано перемешивание микрошариков в образце при вибрации в фазе с формой. На фиг. 24 27 показаны результаты сравнительного исследования полированного среза образцов синтактических пен, полученных с вибрацией и без нее. I. В случае драпажа, то есть нескольких слоев ткани волокон, ориентированных или случайно расположенных, или же жгутов, расположенных пластами, создают вибрацию, которая заставляет жидкую матрицу, преимущественно расположенную под различными слоями (складками), подниматься на свободную поверхность драпажа. Таким образом, вибрация позволяет осуществить дегазацию волокон и уложить их на дно емкости перед их связыванием путем полимеризации матрицы. Удаление воздуха дегазации осуществляется отсасыванием со свободной поверхности драпажа. Проводимая над драпажом вибрация позволяет осуществить пропитку тяжелых для насыщения тканей, таких как многонаправленные структуры или тканные структуры, трудные для проникновения между цепочками и сетками структуры. Для упрочняющих компонентов, образованных, например, волокнами стекла или углерода, и для связующих компонентов, образованных, например, полиэфирной или эпоксидной смолой, частота вибраций близка к средней резонансной частоте каждой из составляющих и составляет, например, 65




результаты: напряжение на разрыв идентично для двух материалов. Если уменьшать расстояние между опорами, то элемент после вибрации имеет лучшее сопротивление на отслаивание. B3. Испытания на изгиб:
условия: прямоугольные образцы длиной 250 мм, различной ширины при скорости опускания 10 мм/мин;
результаты: улучшение приблизительно на 23% напряжения на разрыв. Следует указать, что расстояние между опорами 150 мм запрещено для элемента после вибрации. С. Наилучшая структура и гомогенность полученного композитного материала. Сравнение структур композитных материалов, полученных согласно традиционным технологиям, со структурами материалов, полученных в соответствии со способом, соответствующим изобретению, основано на изучении фиг. 1 27, полученных при помощи электронного микроскопа показывает, что щели в среднем имеют большие размеры (более широкие и длинные) в невибрированных образцах, причем они могут достигать длины более одного миллиметра. Количественный анализ говорит о том, что эти дефекты в 2 4 раза более частые в невибрированном образце. Наибольшее удаление видно в поперечном сечении. Различия между материалом со стратификацией, полученным классическим образом, и материалом, полученным согласно способу, соответствующему изобретению, касаются дефектов смачивания волокон, объема остатков смолы в контактных промежутках смола-волокно, числа отслоений и их величины, по этому показателю вибрированный образец в 2 10 раз лучше, чем невибрированный. Кроме того, вибрированный образец отличается более равномерным распределением волокон в смоле, при большей плотности волокон и при лучшем вспенивании. Испытания на поглощение воды, проводимые над стратифированными композитными материалами, полученными по способу согласно изобретению, позволяют количественно сравнивать смачивание волокон смолой, то есть длительность сохранения стратифированного состояния. Была осуществлена стpатификация пластины 500 х 500 мм стекла или кевлаpа/смола, эбуллаж котоpой осуществлялся либо вpучную, либо по способу согласно изобpетению. Были вырезаны образцы размером 400 х 150 мм по центру пластины. Образцы:
А: "Rovimat" 300 х 300 мм, эпоксидная смола N 1, эбуллированная вручную


B: тот же образец, но с применением вибрации,




D: образец С, полученный с вибрацией,


Эпоксидные смолы 1 и 2 одинакового качества. Смола N 2 имеет меньшую вязкость. Результаты: (см. табл. 1). Образцы А-D были изготовлены в одинаковых условиях (


Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11, Рисунок 12, Рисунок 13, Рисунок 14, Рисунок 15, Рисунок 16, Рисунок 17, Рисунок 18, Рисунок 19, Рисунок 20, Рисунок 21, Рисунок 22, Рисунок 23, Рисунок 24, Рисунок 25, Рисунок 26, Рисунок 27, Рисунок 28