Способ контроля толщины гальванопокрытия в процессе осаждения и устройство для его осуществления
Сущность изобретения: устройство содержит весоизмерительный механизм с коромыслом 3, к которому присоединен подвес с измерительным электродом 5, размеры которого откалиброваны по площади кратно единице ее измерения в см2, средство 32 подключения электрода к катодной шине ванны 31, пружинный элемент 2, механизм балансировки коромысла 10 и индикатор толщины покрытия 16. Пружинный элемент 2 выполнен в виде закрепленной на оси спиральной моментной пружины. Устройство дополнительно содержит узел автоматического дискретного подкручивания спиральной пружины 2 на заданный угол поворота, выполненный в виде электродвигателя 11, связанного через поводок 14 с внешним концом спиральной пружины 2 и измерительной стрелкой 7, и систему управления электродвигателем 29, включающую в себя первый комплекс А1, регистрирующий нулевое положение, и второй комплекс А2 окончания дискрета, установленный с возможностью взаимодействия с коромыслом 3, а также третий комплекс А3, управляющий электродвигателем 11 и установленный с возможностью взаимодействия с измерительной стрелкой 7, причем каждый комплекс выполнен в виде последовательно соединенных оптопар (светодиод, фотодиод) с триггером и реле, подключенных к автономному источнику питания 28, и блок управления электродвигателем 29, к входу которого присоединены выходы комплексов А1 и А2, при этом выход комплекса А3 присоединен ко второму входу реле первого комплекса А1, а второй выход последнего - к входу исполнительного органа 30, с звуковой и световой сигнализацией, клеммную группу для подключения средства автоматизации системы управления в технологической цепи гальванопокрытия и тумблер S. Измерительный механизм устройства снабжен магнитным успокоителем 4, а с целью увеличения долговечности через шланг и вмонтированный в корпус 26 штуцер 33 подается чистый воздух для образования воздушного подпора внутри. Устройство может быть управляемо вручную оператором или работать в автоматическом режиме. 2 с.п. ф-лы, 4 ил.
Изобретение относится к гальванотехнике и может быть использовано для контроля толщины покрытия деталей в процессе электроосаждения материала покрытия в гальванической ванне.
Известен способ определения толщины слоя металла, осаждаемого в гальванической ванне, с использованием калиброванных по толщине платинированных пластин свидетелей, которые партией из нескольких штук завешиваются в раствор параллельно с изделием и последующим извлечением их через интервалы для измерения слоя. Указанный способ, разработанный опытным путем в процессе развития гальванотехники, в данное время не обеспечивает достаточную точность контроля в связи с возрастающими требованиями к допускам покрытий. Повышение точности измерений достигалось созданием стационарных дорогостоящих устройств или установок со сложной схемой, включающей УВМ, ЭВМ, индуктивные преобразователи с вспомогательной аппаратурой и др. элементы [1] Использование перечисленных устройств с включением в схему сложных стандартных, электронных приборов в жестких цеховых условиях потребует надежной их защиты от перегретого, переувлажненного с примесями паров агрессивных веществ воздуха, потребует для обслуживания такой аппаратуры специалистов высокой квалификации и высокой культуры производства. Известен способ контроля толщины гальванопокрытий в процессе осаждения, согласно которому в раствор ванны рядом с изделием, предназначенным для покрытия, опускают измерительный электрод, балансируют массу электрода, и в качестве информативного параметра, по которому судят о толщине нарастающего покрытия, используют ток в цепи измерительного прибора, который пропорционален весу материала, осаждаемого на электрод [2] Размеры электрода определяют путем соотношения площадей продольного, вертикального сечения ванны поверхности и конфигурации изделия. Устройство, реализующее способ, содержит источник питания с катодом, весоизмерительный механизм с коромыслом, соединенным с катодной шиной ванны, к которому присоединены цилиндрическая пружина и подвес с измерительным электродом, фотоэлектрическое компенсационное уравновешивающее устройство с магнитоэлектрическим корректором нуля и индикатором толщины покрытия [2] Основными измерительными элементами весоизмерительного устройства рассматриваемого прототипа, являются электромагнитны, создающие упругие электромагнитные поля, и цилиндрическая регулировочная пружина, корректирующая силу упругости магнитного поля. Взаимодействия различных сил в весоизмерительном устройстве при измерении массы исключают возможность измерять массу прямолинейно. Такое весоизмерительное устройство тарируется на измерение только заданной конечной величины массы слоя покрытия. Электрическая схема рассматриваемого прототипа содержит три не связанных между собой источника постоянного тока, от стабильной работы каждого из которых в значительной степени зависит величина погрешности показаний прибора. Использование в схеме фотосопротивлений, чувствительных к изменениям температуры, в одном патроне с нагревающейся осветительной лампой может повлиять на точность измерений. Действия устройства-прототипа классифицируются, как действия пассивного контроля, требующие присутствия оператора, который должен отреагировать на информативный параметр фотоэлектрического устройства об окончании процесса покрытия выключением катодного тока гальванической ванны. Прототип не может использоваться в ваннах, покрываемых во время работы крышкой или с принудительным перемешиванием раствора, или с движущимся катодом, так как силы потока раствора, действующие на измерительный электрод, могут оказаться больше величины информативного параметра контролируемого слоя покрытия. Задачей изобретения является создание такого способа и устройства для активного контроля и измерения толщины гальванопокрытий в процессе осаждения, которые являясь простыми и надежными, обеспечивали бы высокую точность измерений толщины слоя гальванопокрытий всех используемых в гальванотехнике металлов в жестких цеховых условиях гальванического производства. Для этого в способе контроля и измерения толщины гальванопокрытий в процессе осаждения, заключающемся в том, что в раствор ванны опускают измерительный электрод, балансируют массу электрода и определяют информативный параметр, по которому судят о толщине нарастающего покрытия, согласно изобретению в качестве информативного параметра используют массу осаждаемого покрытия на измерительном электроде, поверхность которого откалибрована по площади кратно единице ее измерения в см2, при этом массу покрытия измеряют взвешиванием непрерывно в процессе осаждения, используя взвешивающий механизм со спиральной моментной пружиной. В устройстве, реализующем заявленный способ, содержащем корпус, весоизмерительный механизм с измерительной пружиной и коромыслом, к которому присоединен подвес с измерительным электродом, средство подключения электрода к катодной шине ванны, узел балансировки коромысла и индикатор толщины покрытия, согласно изобретению измерительная пружина выполнена в виде закрепленной на оси спиральной моментной пружины, узел балансировки выполнен в виде спиральной моментной пружины с противоположной навивкой, установленной на одной оси с измерительной пружиной и связанной через поводок и клемму с катодной шиной ванны, устройство дополнительно содержит узел автоматического дискретного подкручивания спиральной пружины на заданный угол поворота, выполненный в виде электродвигателя, связанного через поводок с внешним концом спиральной пружины и измерительной стрелкой, и систему управления электродвигателем, включающую в себя первую оптопару регистрации нулевого положения и вторую оптопару окончания дискрета, установленные в корпусе с возможностью взаимодействия с коромыслом, а также третью оптопару, установленную подвижно относительно шкалы индикатора с возможностью взаимодействия с измерительной стрелкой, причем каждая оптопара последовательно соединена с триггером и реле, автономный источник питания, параллельно запитывающий оптопары, триггеры и реле, и блок управления электродвигателем, к входам которого присоединены выходы реле первой и второй оптопар, при этом выход реле третьей оптопары присоединен ко второму входу реле первой оптопары, а реле первой оптопары имеет выход для присоединения к исполнительному органу. Принцип работы предлагаемого устройства заключается в уравновешивании массы осаждаемого металла на поверхности откалиброванного по площади в см2 измерительного электрода в процессе гальванопокрытия, с силой натяжения измерительной пружины, возникшей при ее подкручивании. Угол подкручивания, сила натяжения измерительной пружины, уравновешенная масса слоя осажденного металла на измерительном электроде эквивалентны, поэтому измерительная стрелка показывает на шкале индикатора угол подкручивания, отградуированный в единицах массы. Использование в весоизмерительном механизме узла дискретного подкручивания спиральной пружины, синхронно работающего со скоростью нарастающей массы осаждаемого металла на измерительном электроде, обеспечивает возможность измерять толщину слоя в динамике, от начала гальванопокрытия, что значительно расширяет технико-эксплуатационные возможности предлагаемого устройства. Измерение слоя металла в динамике производится визуально по шкале индикатора, а контроль заданной величины покрытия выполняется автоматически при совмещении измерительной стрелки со шторкой и оптопарой комплекса А3, возникший при этом электросигнал поступает в исполнительный орган, который через тумблер выдает команду на средство управления автоматикой в цепи гальванопокрытия для реагирования. Изобретение поясняется чертежами, где на фиг. 1 изображена принципиальная схема активно действующего устройства для измерения толщины слоя гальванопокрытий в процессе осаждения, на фиг. 2 блок-схема устройства, на фиг. 3 циклограмма работы узлов устройства, на фиг. 4 диаграмма-графики измерений. Устройство содержит весоизмерительный механизм, выполненный в виде оси 1, на которой жестко закреплены внутренний конец измерительной пружины, выполненной в виде спиральной моментной пружины 2, коромысло со шторкой 3, магнитный успокоитель 4, закрепленный на подвесе измерительный электрод 5 и контрольная стрелка 6. Измерительная стрелка 7 со шторкой 8 жестко скреплена с внешним концом пружины 2. Установку контрольной стрелки 6 на нуль обеспечивает узел балансировки со спиральной моментной пружиной 9 с противоположной навивкой, закрепленной внутренним концом на оси 2. Внешним концом пружина 9 прикреплена к рукоятке с поводком 10 узла балансировки. Плоские спиральные пружины 2 и 9 конструктивно отличаются одна от другой диаметром, количеством витков, сечением стальной пружинной ленты и выбираются таким образом, чтобы их частотные характеристики взаимно гасили резонансные колебания и вибрации механизма. Характеристики спиральных пружин теоретически прямолинейные, в действительности пружины стабильнее работают с заданными начальными усилиями, поэтому пружины 2 и 9, жестко крепящиеся на оси 1, в нормальном положении монтируются с диаметрально направленными моментами сил. Омедненные пружины являются надежными, эластичными проводниками катодного тока. Узел автоматического дискретного подкручивания пружины на заданный угол поворота содержит электродвигатель 11, связанный с осью 12 узла подкручивания спиральной пружины 2, угловой передачей с фрикционной муфтой 13 и поводком 14, жестко связанным с внешним концом спиральной пружины 2. Рукоятка 15, жестко соединенная с осью 12, предназначена для ручного подкручивания пружины 2. Отсчет показаний производится по линейной шкале индикатора 16 с ценой деления 1 мг. Система управления электродвигателем 11 включает в себя комплексы А1, А2 и А3. Указанные комплексы образованы последовательно соединенными элементами, из которых исходным элементов является оптопара (светодиод, фотодиод), далее, триггер с усилителем, на входе цепочки реле. На фиг. 2 все элементы указанных комплексов имеют свои цифровые обозначения: оптопара, триггер и реле комплекса А1 обозначены позициями 17, 18, 19 соответственно, комплекса А2 позициями 20, 21, 22, комплекса А3 позициями 23, 24, 25. Направления электрического сигнала между элементами показаны стрелкой. Реле 19 комплекса А1 имеет две контактные группы К1 и К2. Комплексы А1 и А2 смонтированы в корпусе 26 устройства с возможностью взаимодействия с коромыслом 3, а комплекс А3 смонтирован на установочном кольце 27 устройства с возможностью взаимодействия с измерительной стрелкой 7. Автономный источник питания 28 параллельно записывает комплексы А1, А2, А3, блок 29 управления электродвигателем и исполнительный орган 30. Выходы реле 19 и 22 комплексов А1 и А2 присоединены к входам блока управления 29, выход реле 25 комплекса А3 присоединен ко второму входу реле 19 комплекса А1, а второй выход реле 19 присоединен к входу исполнительного органа 30, включающему в себя звуковую и световую сигнализации, клеммную группу для подключения средства автоматизации системы управления в технологической цепи гальванопокрытия (на рисунках не обозначены) и тумблер S. Блок управления 29 изготовлен по принципам, известным в электротехнике, его устройство не требует особых пояснений. Коромысло 3 с измерительным электродом 5 соединено с катодной шиной ванны 31 через спиральную пружину 9 и клемму 32. В корпус устройства 26 вмонтирован штуцер 33 для подвода чистого воздуха, с целью обеспечения воздушного подпора внутри корпуса, для защиты от попадания в него летучих агрессивных веществ, находящихся в атмосфере гальванического цеха. Позицией 34 обозначена пусковая кнопка блока питания. Для проведения измерений в гальванической ванне со спокойным режимом осаждения устройство крепится в удобном для работы месте над поверхностью раствора, в который погружается измерительный электрод 5. Если ванна покрыта крышкой, процесс осаждения металла бурно протекающий, тогда к устройству прикрепляется соединенная шлангами с основной гальванической ванной малогабаритная проточная ванна с общими параметрами плотности катодного тока и раствора, в который погружается измерительный электрод устройства. Для устранения возможной погрешности измерений в методику измерений вводят экспериментально выведенный поправочный коэффициент. Основными показателями, определяющими эксплуатационную характеристику предлагаемого контрольно-измерительного устройства, являются: цена деления шкалы индикатора 1 мг, диапазон измерений толщины осаждаемого слоя металла - от долей мкм до нескольких мм, предел измерений от нуля до 500 мг, погрешность на всем диапазоне измерений не более



Формула изобретения
1. Способ контроля толщины гальванопокрытий в процессе осаждения, заключающийся в том, что в раствор ванны опускают измерительный электрод, балансируют массу электрода и определяют информативный параметр, по которому судят о толщине нарастающего покрытия, отличающийся тем, что в качестве информативного параметра используют массу осаждаемого покрытия на измерительном электроде, откалиброванном по площади кратно единице ее измерения в см2, при этом массу покрытия измеряют взвешиванием измерительного электрода непрерывно в процессе осаждения, используя взвешивающий механизм со спиральной моментной пружиной. 2. Устройство для контроля толщины гальванопокрытий в процессе осаждения, содержащее корпус, весоизмерительный механизм с измерительной пружиной и коромыслом, к которому присоединен подвес с измерительным электродом, средство подключения электрода к катодной шине ванны, узел балансировки коромысла и индикатор толщины покрытия, отличающееся тем, что измерительная пружина выполнена в виде закрепленной на оси спиральной моментной пружины с противоположной навивкой, установленной на одной оси с измерительной пружиной и связанной через поводок и клемму с катодной шиной ванны, устройство дополнительно содержит узел автоматического дискретного подкручивания измерительной пружины на заданный угол поворота, выполненный в виде электродвигателя, связанного через поводок с внешним концом спиральной пружины и измерительной стрелкой, и систему управления электродвигателем, включающую в себя первую оптопару регистрации нулевого положения и вторую оптопару окончания дискрета, установленные в корпусе с возможностью взаимодействия с коромыслом, а также третью оптопару, установленную подвижно относительно шкалы индикатора с возможностью взаимодействия с измерительной стрелкой, причем каждая оптопара последовательно соединена с триггером и реле, автономный источник питания, параллельно запитывающий оптопары, триггеры и реле, и блок управления электродвигателем, к входам которого присоединены выходы реле первой и второй оптопар, при этом выход реле третьей оптопары присоединен к второму входу реле первой оптопары, а реле первой оптопары имеет второй выход для присоединения к исполнительному органу.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4