Способ получения тугоплавких неорганических соединений в режиме горения
Изобретение относится к способу получения неорганических соединений и может быть использовано в химической и машиностроительной отраслях промышленности. Новым в способе получения тугоплавких неорганических соединений в режиме горения является то, что готовят по крайней мере две исходные смеси, загрузку их в реактор ведут одновременно и раздельно, причем в процессе загрузки указанные смеси подают на боковые поверхности валков реактора, затем нагревают их до температуры, обеспечивающей расположение фронтов горения на постоянном расстоянии от точек подачи смесей, после чего последние подают в зоны горения, расположенные также на боковых поверхностях валков, при этом линейные скорости подачи смесей в зоны горения определяют из условия, формула которого приведена в описании. На продукты горения воздействуют одним из валков с усилием 10 - 1000 кг/см2. Готовый продукт - cложный титановольфрамовый карбид, порошок состоит из однородных частиц, выход 99%. 1 ил., 1 табл.
Изобретение относится к способу получения неорганических соединений и может быть использовано в химической и машиностроительной промышленности.
Известен способ получения тугоплавких неорганических соединений локальным воспламенением реакционной смеси, содержащей металлы III-IV и неметаллы III-IV групп, в замкнутом объеме с последующим высокотемпературным реагированием в режиме горения [1] Недостатками данного способа являются его цикличность и неоднородность по дисперсному составу получаемого соединения. Наиболее близким к изобретению является способ получения тугоплавких неорганических соединений в режиме горения путем непрерывной подачи исходной экзотермической смеси в зону горения реактора и ее термообработки в указанном режиме с последующим непрерывным отводом полученного соединения [2] Недостатком известного способа является невысокий выход целевого продукта и его неоднородность по фазовому составу из-за нестабильности условий горения, что затрудняет его применение для получения твердых сплавов. Измельчение этих порошков практически трудноосуществимо из-за высокой абразивной способности их. Целью изобретения является повышение выхода целевого продукта и улучшение его фракционного состава за счет повышения стабильности условий горения. Поставленная цель достигается тем, что в способе получения тугоплавких неорганических соединений в режиме горения, включающем приготовление исходных смесей компонентов, составляющих соединение, непрерывную загрузку указанной смеси в реактор, подачу ее в зону горения и термообработку в названном режиме с последующей непрерывной выгрузкой полученного соединения, согласно изобретению готовят по крайней мере две исходные смеси, загрузку их в реактор ведут одновременно и раздельно, причем в процессе загрузки указанные смеси подают на боковые поверхности валков реактора, затем нагревают их до температуры, обеспечивающей расположение фронтов горения на постоянном расстоянии от точек подачи смесей, после чего последние подают в зоны горения, расположенные также на боковых поверхностях валков, при этом линейные скорости подачи смесей в зоны горения определяют из условия V






F функция переменных



Tг1,2...n температуры горения исходных смесей, K,
V безразмерная скорость,
То температура окружающей среды, K,
R универсальная газовая постоянная, кал/мол

Q1,2...n теплотворные способности исходных смесей, кал/г,
C1,2...n теплоемкости исходных смесей, кал/г K,

Е1,2...n энергии активации экзотермического химического превращения исходных смесей, кал/моль,








где Kо предэкспонент, 1/с,



плотности исходных смесей


температуры горения исходных смесей Tг1= 3500 K, Tг2 = 1066 K,
теплоемкости исходных смесей C1 0,2 кал/г


теплотворные способности исходных смесей Q1 640 кал/г, Q2 43 кал/г,
энергии активации экзотермического химического превращения исходных смесей Е1 Е2 45000 кал/моль,
коэффициенты теплопотерь боковых поверхностей валков реактора



коэффициенты теплообмена между исходной смесью и боковой поверхностью валков реактора




температура окружающей среды То 300 K,
расстояния между точками подачи каждой из исходной смесей на валки реактора выгрузки продукта x1 x2 10 cм,
линейные скорости адиабатического горения исходных смесей, при нормальных условиях рассчитанные по (3) Vo1 = 3 см/с, Vo2= 1,2 см/с,
предэкспонент Ko 3100 1/с,
коэффициенты теплопроводности смесей






3 < V1 < 5,1 и 1,2 < V2 < 2,4 (см/с). Исходные смеси помещают в загрузочные устройства 1 валкового реактора и приводят в движение валка 2 с линейными скоростями V1 3,5 см/с и V2 2 см/с, предварительно нагрев их с помощью нагревательных элементов 3 до температур Т1 1200 K и Т2 839 K. Из загрузочных устройств 1 смеси поступают на валки 2 в виде лент 4, в которых при достижении ими зон реакции инициируют процесс горения устройствами 5. После синтеза на продукты горения 7 воздействуют одним из валков 2 с усилием 300 кг/см2, регулируемым пружиной 6. Затем готовый продукт 7 собирают в приемное устройство 8. Полученный продукт измельчают в течение 1 часа с загрузкой шаров в весовом соотношении к порошку 5:1. Готовый продукт представляет собой сложный титановольфрамовый карбид. Порошок состоит из однородных частиц, интервал зернистости 0,5 5 мкм, выход 99%
В таблице представлены данные по выходу и фракционному составу получаемых по изобретению тугоплавких соединений. Из представленных в таблице данных следует, что изобретение позволяет получить различные тугоплавкие неорганические соединения, в частности карбиды, бориды, силициды, сложные карбиды и т.д. с выходом целевого продукта не менее 96% Порошки однородны по фракционному составу. Способ легко автоматизируется.
Формула изобретения
vo1,2...n< v1,2...n < vm1,2...n,
где vo1,2...n линейные скорости адиабатического горения исходных смесей при нормальных условиях, см/с;
v1,2...n линейные скорости подачи исходных смесей в зоны горения, см/с;
vm1,2...n максимально допускаемые линейные скорости подачи исходных смесей в зоны горения, определяемые, как ближайший к vo1,2...n корень уравнения;

где




F функция переменных



Tг1,2...n температуры горения исходных смесей, K;
Tо температура окружающей среды, K;

R универсальная газовая постоянная, кал./моль. K;
Q1,2...n теплотворные способности исходных смесей, кал./г;
C1,2...n теплоемкости исходных смесей, кал./г. K;

E1,2...n энергии активации экзотермического химического превращения исходных смесей, кал./моль;


X1,2...n расстояние между точками подачи исходных смесей на боковые поверхности валков и выгрузки соединения, см;
а на продукты горения перед выгрузкой из реактора воздействуют одним из валков с усилием 10 1000 кг/см2.
РИСУНКИ
Рисунок 1, Рисунок 2