Способ получения титаната бария
Использование: получение титанатов щелочно-земельных металлов, которые могут быть использованы при изготовлении высокочастотных керамических конденсаторов. Сущность способа: растворы тетрахлорида титана, хлористого бария и щавелевой кислоты молярной концентрации 1,8-3,0 моль/дм3, 0,8-2,0 моль/дм3 и 0,8-2,0 моль/дм3 соответственно, смешивают в молярном соотношении 1; 0: 1,1: (2,0-2,5). Смешение осуществляют либо последовательным внесением в раствор щавелевой кислоты раствора тетрахлорида титана, а затем со скоростью 150-1500 л/ч раствора хлорида бария, либо внесением предварительно смешанных растворов тетрахлорида титана и хлорида бария со скоростью 200-2000 л/ч с последующим перемешиванием суспензии со скоростью 60-300 об/мин. Отделяют полученный титанилоксалат бария от маточного раствора, титанилоксалат бария промывают, прокаливают, а фильтрат обрабатывают при кипячении серной кислотой. Отделяют осадок товарного сульфата бария, а кислый фильтрат нагревают до 90-105oС и обрабатывают карбонатом магния 0,5-3,0 ч до рН 5-6, отделяют раствор хлористого магния от твердого осадка и упаривают до концентрации, соответствующей требованиям товарного продукта. Твердый осадок прокаливают и получают порошки, которые можно использовать в промышленности строительных материалов. Конденсат после упаривания направляют на стадию получения титанилоксалат бария. 5 з.п. ф-лы, 1 ил.
Изобретение относится к соединениям титана, в частности к способам получения титанатов щелочно-земельных металлов, которые могут быть использованы при изготовлении высокочастотных керамических конденсаторов.
Известен способ получения титанатов двухвалентных металлов путем взаимодействия растворов тетрахлорида титана и хлорида двухвалентного металла с оксалатом аммония и водным раствором аммиака с последующим отделением получаемого осадка от раствора и его прокаливанием [1] Недостатком способа является сложность получения конечного продукта высокой чистоты, так как осаждение в щелочной среде не дает очистки от примесей. Наиболее близким к предлагаемому техническому решению является способ получения титаната бария термическим разложением титанилоксалата бария. По этому способу для получения титанилоксалата бария водный раствор хлорида бария при интенсивном перемешивании при 20-60o добавляют по каплям в водный раствор, содержащий щавелевую кислоту и оксихлорид титана. Осадок прокаливают при 900-1300oС с получением титаната бария [2] Недостатком данного способа является высокая длительность процесса из-за малой скорости смещения растворов, неконтролируемая скорость перемешивания, не обеспечивающая постоянства состава получаемых порошков и их дисперсности, а также, как и во всех других химических способах получения титана бария, большие количества маточных растворов, являющихся отходом производства и требующих утилизации и обезвреживания. Задачей изобретения является повышение производительности процесса, стабилизация состава и дисперсности продукта, утилизация отходов и создание малоотходного производства титаната бария. Поставленная задача достигается тем, что в способе получения титаната бария путем смешения растворов тетрахлорида титана, хлорида бария и щавелевой кислоты с последующим отделением титанилоксалата бария от маточного раствора и его прокаливанием, новым является то, что смешивание 1,8-3,0 молярного раствора тетрахлорида титана, 0,8-2,0 молярного раствора щавелевой кислоты и 0,8-2,0 молярного раствора хлорида бария ведут при соотношении исходных веществ тетрахлорид титана хлорид бария щавелевая кислота равном 1,0 1,1 (2,0-2,2) при перемешивании со скоростью 60-300 об/мин. Смешение осуществляют либо последовательным внесением в раствор щавелевой кислоты раствора тетрахлорида титана, а затем со скоростью 150-1500 л/ч раствора хлорида бария, либо внесением предварительно смешанных растворов тетрахлорида титана и хлорида бария со скоростью 200-2000 л/ч. Полученный после отделения титанилоксалат бария (ТОБ) фильтрат обрабатывают при температуре (90-105)oС последовательно серной кислотой и отделяют сульфат бария, затем карбонатом магния до рН 5-6 с последующим кипячением 0,5-3 ч. Получают твердый осадок и раствор хлористого магния, который отделяют от осадка и упаривают до концентрации, соответствующей требованиям товарного продукта. Установлено, что увеличение концентрации тетрахлорида титана до 1,8-3,0 моль/дм3, а хлорида бария до 0,8-2,0 моль/дм3 при одновременном увеличении избытка хлорида бария в молярном соотношении тетрахлорид титана: хлорид бария: щавелевая кислота 1,0:1,1:(2,0-2,2) позволяет полнее провести реакцию образования титанилоксалата бария, а также уменьшить количество воды, удаляемой при концентрировании раствора хлористого магния. Подача раствора хлорида бария со скоростью 150-1500 л/ч повышает производительность процесса получения титанилоксалата бария, не ухудшая качества продукта. Скорость перемешивания суспензии, равная 60-300 об/мин обеспечивает стабильное получение порошков титаната бария стехиометрического и дисперсного состава. Предварительное смешение растворов хлористого бария и тетрахлорида титана позволяет корректировать молярное соотношение барий титан в их смеси и снижает требования к точности дозировки растворов. Обработка фильтрата после отделения титанилоксалата бария серной кислотой при кипячении позволяет полностью удалить соединения бария из растворов и получить при последующей переработке фильтратов хлористый магний, соответствующий требованиям ТУ по примесям щелочно-земельных металлов. Последующая нейтрализация фильтрата карбонатом магния при температуре 90-105oС в течение 0,5-3,0 час позволяет полностью предотвратить получение солянокислых сточных вод, использовав их в виде хлористого магния в качестве сырья для производства солей магния. Технологическая схема способа получения титана бария представлена на чертеже. Примеры осуществления способа. Пример 1. Для получения 1 кг титаната бария готовят водные растворы тетрахлорида титана и хлорида бария с концентрацией 1,8-3,0 моль/дм3 и 0,8-2,0 моль/дм3 соответственно. Для приготовления растворов используют тетрахлорид титана марки ОЧТ-О ТУ 48-10-102-89 и хлорид бария технический, сорт высший ГОСТ 742-78. В реакционный сосуд с приготовленным в количестве 8,1 кг раствором щавелевой кислоты (ТУ 6-36-0204229-1047-91, высший сорт) концентрацией 1,2 моль/л, нагретым до 55




Формула изобретения
1. Способ получения титаната бария, включающий приготовление исходных растворов тетрахлорида титана, хлорида бария и щавелевой кислоты, смешение растворов с получением титанилоксалата бария, отделение его от фильтрата с последующей промывкой и прокаливанием, отличающейся тем, что исходные растворы тетрахлорида титана, хлорида бария и щавелевой кислоты готовят мольной концентрации 1,8 3,0 моль/дм3, 0,8 2,0 моль/дм3 и 0,8 2,0 моль/дм3 соответственно, смешение растворов ведут в мольном соотношении 1,0 1,1 2,0 2,5 при перемешивании суспензии с частотой 60 300 мин-1, причем раствор хлорида бария подают со скоростью 150 1500 л/ч, а фильтрат после отделения титанилоксалата бария последовательно обрабатывают серной кислотой, отделяют осадок сульфата бария, затем обрабатывают карбонатом магния, отделяют твердый осадок, полученный раствор хлористого магния упаривают до концентрации товарного продукта и конденсат, полученный после упаривания, направляют на стадию получения титанилоксалата бария. 2. Способ по п. 1, отличающийся тем, что смешение исходных растворов производят последовательно: сначала раствор тетрахлорида титана вносят в раствор щавелевой кислоты и затем вносят раствор хлорида бария. 3. Способ по п.1, отличающийся тем, что предварительно смешивают растворы тетрахлорида титана и хлорида бария и полученную смесь вносят в раствор щавелевой кислоты. 4. Способ по п.1, отличающийся тем, что отработку фильтрата серной кислотой проводят в интервале температур 90 105oС. 5. Способ по п. 1, отличающийся тем, что обработку карбонатом магния ведут до достижения значения рН 5 6. 6. Способ по п. 1, отличающийся тем, что обработку карбонатом магния ведут в интервале температур 90 105oС с последующим кипячением в течение 0,5 3,0 ч.РИСУНКИ
Рисунок 1